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Abstract
In this paper, we review the recently discovered asymptotic integrability in the
planar N = 4 SYM theory and discuss its breakdown beyond the asymptotic
region due to the wrapping interactions. We also discuss novel dynamical tests
of the AdS/CFT correspondence one can perform in the special cases when
the wrapping interactions may be neglected.
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1. Introduction

The AdS/CFT correspondence, proposed by Maldacena [1] in 1997, stating that the string
theory on the AdS5 × S5 is dual to N = 4 supersymmetric Yang–Mills in four dimensions,
has become one of the prime subjects of interest in gauge and string theory. Since it is a
strong/weak coupling duality, it offers the unique possibility to investigate a four-dimensional
interacting gauge theory beyond perturbation theory.

In the last few years, thanks to asymptotic integrability, great progress has been made in
confirming the above conjecture in the planar limit. This led, at the same time, to precious
insights and to a deeper understanding of both the related theories. Very briefly the history of
the asymptotic integrability in the planar N = 4 SYM theory can be summarized as follows.

In the seminal paper of Minahan and Zarembo [2], the one-loop integrability of the
dilatation operator in certain subsectors of the gauge side of the correspondence was
discovered. Later on Beisert [3] found the complete one-loop dilatation operator and the
one-loop Bethe equations were written down in [4]. Afterwards Beisert and Staudacher [5]
conjectured the form of the all-loop asymptotic Bethe equations (ABE) up to the so-called
dressing factor, which only contributes starting from the four-loop order. Recently, relying
on the crossing equation proposed in [6] and assuming certain transcendentality properties,
Beisert et al [7] were able to uniquely fix this factor and therefore completed the work of
finding the asymptotic spectrum of the planar N = 4 SYM theory. The asympoticity of
these equations means that for a generic operator with L constituent fields the corresponding
anomalous dimension can be calculated correctly up to the O(g2L) order.

The appearance of the asymptotic integrability suggests that the spectral problem of the
AdS/CFT correspondence is intimately related to the dynamics of some lower dimensional
model (integrable one-dimensional spin chain? two-dimensional sigma model?). This relation
is very surprising, in particular, from the perspective that both the string theory on AdS5 × S5

and the N = 4 gauge theory are higher dimensional quantum theories! It is the purpose of
this paper to explain how this link can be established for ‘long’ operators. The treatment of
the operators of arbitrary length is currently beyond reach and will require revealing the ‘true’
nature of the lower dimensional model.

In this paper we will lay all the necessary foundations (sections 1–3) required to present
the set of the asymptotic Bethe equations which, up to the wrapping order, determine the
anomalous dimension of any single trace operator of the planar N = 4 supersymmetric Yang–
Mills theory. In section 4 we will discuss analytic properties of operators belonging to a
particular subsector of the theory, the sl(2) sector. The shortest of these operators describe the
leading breaking of the Bjorken scaling and their leading anomalous dimension at unphysical
negative values of the spin is determined by the celebrated BFKL equation. In section 5, we
will discuss this relation and use the results of section 4 in order to check the veracity of the
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asymptotic Bethe equations beyond the asymptotic region. The asymptotic Bethe equations
fail this test and, therefore, must be modified at and beyond the wrapping order. On the
other hand, since the wrapping order is controlled by the length L, it is possible to study
non-petrubative behaviour of the anomalous dimensions in the limit L → ∞. This question
is the subject of section 6 where novel dynamical tests of the AdS/CFT correspondence, one
can perform with the help of the asymptotic Bethe equations, are presented. In section 7, we
discuss an interesting observation relating the Bethe equations of the one of the subsectors of
the full theory to the Bethe equations of the Hubbard model. This relationship, though only
valid to the first three orders of perturbation theory, suggests that a well-defined short-range
model may be capable to account for the wrapping interactions.

Note added: This work is a shortened version of the author’s PhD thesis submitted to Humboldt
University, Berlin

Note added: After this review was written, the Y-system for planar AdS/CFT correspondence
[8] and subsequently a set of TBA equations [9–11] have been proposed. Both sets of equations
are conjectured to describe correctly the spectrum of any state/operator. We will, however,
not discuss these recent proposals in this paper.

2. The N = 4 super Yang–Mills theory and the AdS/CFT correspondence

In this section we will briefly review the gauge theory side of the AdS/CFT duality and
subsequently formulate the precise correspondence.

2.1. Gauge theory side

2.1.1. The N = 4 super Yang–Mills theory. The N = 4 super Yang–Mills theory (SYM) is a
maximally supersymmetric gauge theory in four dimensions without spin-2 fields (gravitons).
In what follows we will review the aspects of this theory necessary to study the integrable
structures appearing in the planar limit. For more details and references see [12].

The constituents of the N = 4 gauge theory are six scalar fields �m, four fermionic
fields �αa, �̇

a
α̇ and the gauge fields Aμ. Anticipating the transformation rules under gauge

transformations, we will regard the covariant derivative Dμ

Dμ := ∂μ − igAμ, DμW := [Dμ,W] = ∂μW − igAμW + igWAμ, (2.1)

rather than the gauge field as the fundamental field. Here W stands for a representative of the
fundamental fields

W = (
Dμ,�αa, �̇

a
α̇ , �m

)
. (2.2)

The Greek indices belong to the Lorenz algebra so(3, 1) = su(2) × su(2), with μ, ν, . . .

running from 1 to 4 and α, β, . . . as well as α̇, β̇, . . . taking values 1, 2. The Latin indices
correspond to the R-symmetry algebra so(6) = su(4). The scalar fields are assumed to be in
the fundamental representation of so(6) and thus m, n, . . . run from 1 to 6, whereas fermions
transform in the spinor representation and the corresponding indices a, b, . . . take values
1, . . . , 4. All fields are assumed to be in the adjoint representation of the gauge group U(N),
and under the local transformations U(x) ∈ U(N) they transform as

W i
j �→ Ui

kWk
l (U−1)lj , (Aμ)ij �→ Ui

k(Aμ)kl (U
−1)lj − ig−1∂μUi

k(U
−1)kj , (2.3)

with the repeating indices being summed over. In what follows, we will suppress the U(N)

indices. The field strength tensor Fμν is defined through

Fμν = ig−1[Dμ,Dν] = ∂μAν − ∂νAμ − ig[Aμ,Aν] (2.4)

3
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and transforms canonically under local gauge transformations

Fμν �→ UFμνU
−1. (2.5)

The Lagrangian of the N = 4 SYM theory is composed of terms of dimension four only

LYM(x, g) = Tr
(

1
4F

μνFμν + 1
2D

μ�nDμ�n − 1
4g2[�m,�n][�m,�n]

+ �̇a
α̇σ α̇β

μ Dμ�βa − 1
2 ig�αaσ

ab
m εαβ [�m,�βb] − 1

2 ig�̇a
α̇σm

abε
α̇β̇
[
�m, �̇b

β̇

])
.

In the above formula σμ and σm denote the chiral gamma matrices in four and six dimensions.
The equations of motion following from this Lagrangian are invariant under the N = 4

super Poincaré symmetry algebra. The infinitesimal bosonic shifts can be parametrized by
sμ, μ = 0, 1, 2, 3

δs = sμPμ, (2.6)

and under this transformation the set (2.2) transforms as

δsDμ = igsνFμν, δs�m = sμDμ�m,
(2.7)

δs�αa = sμDμ�αa, δs�̇
a
α̇ = sμDμ�̇a

α̇ ,

where we have assumed an adjoint action of the generators on the fields

δsW := [δs,W] . (2.8)

The infinitesimal fermionic translations are parametrized by Grassman variables

δw = wα
a Qa

α, (2.9)

and the corresponding field transformations read

δwDμ = igwα
a εαβσ βγ̇

μ �̇a
γ̇ ,

δw�m = wα
a σ ab

m �αb,
(2.10)

δw�αa = 1
2 igσm

abσ
bc
n εαβwβ

c [�m,�n] − 1
2σ

μ

αβ̇
εβ̇γ̇ σ ν

γ̇ δw
δ
aFμν

δw�̇a
α̇ = σab

n σ
μ
α̇βw

β

bDμ�n.

The transformation laws under the action of Q̄ can be obtained by replacing

� �→ �̇, w �→ ẇ (2.11)

in (2.10).
Using the explicit form of the parametrizations (2.6) and (2.9) and with the help of the

equations of motion one can derive from (2.7), (2.10) and the conjugated transformations the
following algebraic relations between the generators{
Qa

α,Qb
β

} = −2igεαβσ ab
m �m,

[
Pμ,Qa

α

] = −igεαβσ
βγ̇
μ �̇a

γ̇ ,

{Q̄α̇a, Q̄β̇b} = −2igεα̇β̇σm
ab�m, [Pμ, Q̄α̇a] = −igεα̇β̇σ

β̇γ
μ �γa,{

Qa
α, Q̄bβ̇

} = 2δa
bσ

μ

αβ̇
Pμ, [Pμ, Pν] = −igFμν.

(2.12)

In this paper we will work with fields in the chiral notation

W = (
Dα̇β ,�ab,�αb, �̇

b
α̇,Fαβ, Ḟα̇β̇

)
. (2.13)

The relation to the previous canonical notation is given by

Dμ ∼ σ α̇β
μ Dα̇β ,

Fμν ∼ σαγ̇
μ εγ̇ δ̇σ

δ̇β
ν Fαβ + σ α̇γ

μ εγ δσ
δβ̇
ν Ḟα̇β̇ , (2.14)

�m ∼ σba
m �ab.
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In a similar way we redefine the translation operator Pμ (and later also the conformal boost
operator Kμ)

Pμ ∼ σ α̇β
μ Pα̇β . (2.15)

The advantage of this notation is the occurrence of the ‘fermionic’ indices of su(2) × su(2)

and su(4) only.

2.1.2. The conformal and superconformal symmtery. The N = 4 gauge theory posses a
further classical symmetry, the conformal symmetry [13]. What, however, distinguishes this
field theory from other massless field theories is the preservation of the conformal symmetry
after the quantization. A simple consequence of this fact is the vanishing of the beta function

β = μ
∂g

∂μ
= 0. (2.16)

Thus the charge does not get renormalized and the momentum–energy tensor remains traceless.
The only divergent quantities are the wavefunctions of the fields from which follows that the
scaling dimensions of the operators receive quantum corrections. Indeed, the conformal
symmetry constraints severely the form of the two-point correlations functions. While for any
two local scalar fields ÔA(x1) and ÔB(x2) the Poincaré symmetry implies that

〈ÔA(x1)ÔB(x2)〉 = fAB(x1 − x2), (2.17)

with f (x) being an arbitrary scalar function, the conformal symmetry constraint its form to

〈ÔA(x1)ÔB(x2)〉 = CAB(g)

|x1 − x2|2�(g)
. (2.18)

The quantity �(g) is the scaling dimension of an operator and, as announced before, receives
quantum corrections

�(g) = �0 + γ (g). (2.19)

Here, �0 denotes the canonical dimension and γ (g) the anomalous part. Standard arguments
of the renormalization theory relate γ (g) of an operator to the corresponding wavefunction
renormalization d

dμ
log Z. The conformal symmetry also constraints up to a constant the form

of the three-point function

〈ÔA(x1)ÔB(x2)ÔC(x3)〉 = CABC(g)

|x12|�A+�B−�C |x23|�B+�C−�A |x31|�C+�A−�B
, (2.20)

where |x12| = |x1 − x2|, etc. The correlation functions of four and more fields are not fully
determined by the conformal symmetry.

Although the dimension of any operator may be found directly from the correlation
functions (2.18) and (2.20) it is more convenient, as it will become clear later, to consider the
dilatation operator. The dilatation operator D is one of the generators of the conformal algebra
whose eigenvalues are precisely the scaling dimensions

DÔA(x) = �(g)ÔA(x). (2.21)

The two spacetime symmetry algebras, the conformal algebra and the supersymmetry algebra
(together with the so(6) flavour algebra), combine to the superconformal algebra psu(2, 2|4).
The generators and the structure relations of this algebra are presented and discussed in
section 4. It is the unparalleled amount of the symmetries at the quantum level that is
responsible for many interesting properties of the N = 4 gauge theory.

5
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Figure 1. An example of a planar and non-planar Feynman diagram. The grey box represents a
single-trace operator composed of two elementary fields.

2.1.3. The ’t Hooft limit. In the renowned article of ’t Hooft [14] a novel limit for gauge
theories with the U(N) gauge groups was proposed, namely N �→ ∞. In this section we will
briefly discuss this limit for the N = 4 SYM theory.

A common normalization of the actions of the Yang–Mills theories is

S = 2

g2
YM

∫
d4xLYM(x, 1). (2.22)

For the purpose of the large N expansion it is convenient to rescale all fields with g = 1
4π

gYM

√
N

W �→ gW, (2.23)

leading to

S = N

∫
d4x

8π2
LYM(x, g). (2.24)

All fields in the theory are assumed to be in a Hermitian adjoint representation of the gauge
group U(N) and thus can be represented by N × N Hermitian matrices W i

j . To each upper
index one assigns an incoming arrow and to each lower index an outgoing arrow1

W i
j

� �

In this notation every propagator is depicted by two parallel lines. For gauge invariant operators
all indices must be contracted, resulting in the ‘fat’ Feynman diagrams (see figure 1). In this
case the contribution of each diagram can be written as [14]

#N2−2ge (g2)�, (2.25)

where # is a number, ge denotes the genus of the surface spanned by the diagram and � counts
the loop order. Therefore any physical quantity η must admit the following expansion:

η = η0 +
∞∑

j=1

gj

∞∑
ge=0

1

N2ge−c
η(j,ge), (2.26)

with η0 being the classical contribution. This applies, in particular, to the scaling dimension
�(g,N) of the operators.

1 Recall that the adjoint representation of U(N) can be constructed from the tensor product of the fundamental and
the antifundamental representation.

6
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An interesting limit, as may be seen from (2.26), emerges when N → ∞, gYM → 0 and

g2 = g2
YMN

16π2 = const. This limit is called the planar limit, due to the fact that only the planar
diagrams, that is with ge = 0 (see figure 1), contribute.

2.1.4. The physical operators. The basis of local physical operators of the theory is spanned
by multiple products of the single-trace operators

Ô = Tr(�1�2 · · · �n) Tr(�n+1 · · · �n+m) · · · . (2.27)

Taking into account that the covariant derivative must always act on a field one finds

�j ∈ (DkF,Dk�,Dk�,Dk�̇,DkḞ). (2.28)

It can be shown, see e.g. [3], that this set of fields, under the assumption that the Lorenz indices
may not be contracted, is irreducible with respect to Bianchi identities, equations of motion,
etc.

In the planar limit the interactions between operators in different traces in (2.27) are
suppressed and it is sufficient to consider the single-trace operators

Tr(�1�2 · · · �p). (2.29)

In this paper we will confine ourselves to this case only.

2.2. Formulation of the AdS/CFT correspondence

The AdS/CFT correspondence states that the N = 4 SYM theory is dynamically equivalent to
the IIB superstring theory on AdS5 ×S5 when the parameters of the both theories are identified
as follows:

gs = 4πg2

N
,

R2

α′ = 4πg. (2.30)

In this formula R denotes the radius of both AdS5 and S5 and gs stands for the string coupling
constant. Stated more precisely, to each gauge invariant operator of the N = 4 gauge theory
there corresponds a dual string state such that all associated physical quantities coincide.

Let |O〉 be an arbitrary state of the string theory and E
(
gs,

R2

α′
)

the eigenvalue of this state
with respect to the string Hamiltonian Ĥ (defined as an operator conjugated to the AdS5 time
variable)

H |O〉 = E

(
gs,

R2

α′

)
|O〉. (2.31)

By comparing the string and gauge theory symmetry algebras and their representations, one
concludes that the string Hamiltonian should correspond to the dilatation operator on the gauge
theory side. Therefore there should exist a state O(x), such that

DO(x) = �(g,N)O(x) (2.32)

and

E

(
gs,

R2

α′

)
= �(g,N). (2.33)

In the planar limit this statement reduces to

E

(
0,

R2

α′

)
= �(g,∞). (2.34)

7
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According to the above formula scaling dimensions of the planar gauge theory should be
identified with energies of the free string theory! Unfortunately, the quantization of string
theory on AdS5 × S5 product space have not been yet understood and therefore a direct
verification of (2.33) and (2.34) is not feasible. Despite this fact it is possible to test this
equality in certain special cases, some of which we will discuss later.

The strongest version of the AdS/CFT correspondence states that the duality between the
both theories holds for arbitrary values of N and g ∼ λ = g2

YMN in (2.30). In particular thus
for small gauge groups, as for example SU(2) or SU(3), and for strongly coupled string theory.
A more modest formulation claims the equivalence in the planar limit N → ∞, gYM → 0
only (the most conservative version requires additionally λ → ∞ such that the supergravity
approximation of string theory is valid). One also cannot exclude that the equivalence of the
both theories holds only asymptotically so that the O

(
1
N

)
expansion of the gauge and string

theory agrees and the discrepancy of the results may be seen only after resummation.

3. Foundations of integrability

The integrability of a physical system has established itself as an important concept in the
mechanics and quantum mechanics since it usually leads to deep insights into the dynamics
of the system. Although it does not necessarily imply solvability, integrability puts severe
constraints on the physical processes excluding in particular any chaotic behaviour.

3.1. Integrability

In this section we will introduce the concept of classical integrability and discuss its possible
extensions to the quantum case.

Let H(q, p) be a Hamiltonian of a system with N-dimensional phase space. The time
evolution of the system is then determined through the Hamilton equations

q̇j = ∂H

∂pj

j = 1, . . . , N

(3.1)
ṗj = −∂H

∂qj

j = 1, . . . , N.

For the Hamilton mechanics the definition of the integrability may be formulated in the
following way.

Definition 1. A system is integrable iff there exist N algebraically independent constants of
motion, that is N functions (L1, . . . , Ln), which satisfy the following two conditions:

(i) ∀ i, j : {Li, Lj } = 0,

(ii) ∀ i : {H,Li} = 0.

Here, { , } denotes the Poisson bracket. A common way to quantize a system is to replace the
phase space by a Hilbert space, the variables q, p and the Hamiltonian H through the operators

q �→ q̂, p �→ p̂, H �→ Ĥ , (3.2)

and the Poisson bracket through the commutator

{ , } �→ [ , ]. (3.3)

Consequently, one could try to formulate the quantum definition of integrability as follows.

8
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Definition 2. A quantized system is integrable iff there exist N independent operators
L̂1, . . . , L̂N that commute with each other and with the Hamiltonian Ĥ .

Unfortunately, this definition, as we will explain below, is not precise enough (see also the
discussion in [15]).

Let L̂ be one of the constants of motion and let us assume that the spectrum of the system
is not degenerated. It follows from [Ĥ , L̂] = 0 that Ĥ and L̂ have common eigenvectors

Ĥ |�j 〉 = Ej |�j 〉, L̂|�j 〉 = ηj |�j 〉, j = 1, . . . , N, (3.4)

where N is the dimension of the corresponding Hilbert space. Therefore the operator L̂ can
be decomposed into the sum of the projectors

L̂ =
N∑

j=1

ηj P̂j , where P̂j = |�j 〉 ⊗ 〈�j |. (3.5)

On the other hand each projector Pj can be related to the Hamiltonian as follows:

P̂k =
N∏

j=1,j =k

Ĥ − Ej

Ek − Ej

. (3.6)

Putting this formula into the decomposition (3.5) one finds

L̂ =
N∑

j=1

Ĥ j−1
N∑

l=1

Fjl (E1, . . . , En) ηl. (3.7)

Therefore any two commuting operators are not algebraically independent and the set of
operators {H,L1, . . . , Ln} can be at most linearly independent. This, however, is not much of
a constraint on the quantum system since for example {Ĥ , Ĥ 2, Ĥ + Ĥ 3} satisfy this condition.
There are also models known for which the existence of the additional commuting operators
L̂j , j = 1, . . . , N was shown without immediate consequences for the understanding of the
physics of the system.

A different possibility for defining the quantum integrability offers systems which support
the scattering of particles. These need not be physical, sometimes physical processes can be
simply interpreted as the scattering of certain particles. In what follows, we will discuss such
one-dimensional systems.

Let 1 and 2 be two well-separated particles with asymptotic momenta p1 and p2. The
‘incoming’ wavefunction is then given by

�in(x1, x2) ∼ exp i(p1x1 + p2x2) x1 � x2. (3.8)

Both momenta satisfy two conservation conditions

(i) the conservation of energy, e.g. E = 1
2

(
p2

1 + p2
2

) = const;
(ii) the conservation of momentum P = p1 + p2 = const.

Therefore after the scattering process the outgoing momenta need to be a permutation of
the incoming

p′
1 = p2, p′

2 = p1. (3.9)

The complete asymptotic wavefunction can be thus written as

�asymp(x1, x2) ∼ exp i(p1x1 + p2x2) + S1,2(p1, p2) exp i(p2x1 + p1x2) x1 � x2. (3.10)

The quantity S(p1, p2) defines the corresponding scattering matrix (S-matrix) and can be
determined using the Hamiltonian. For theories with the underlying translation invariance the

9
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S-matrix depends only on the difference of both momenta S(p1 − p2). In the case of three
and more particles the conservation conditions 1 and 2 are not sufficient to determine the
state of the system after scattering. Physically this corresponds to the diffractive three- and
many-body processes. The n-particle wavefunction in the asymptotic region

x1 � x2 � · · · � xn (3.11)

can be represented as a sum of the diffractive and the non-diffractive part

�asymp(x1, x2, . . . , xn) ∼
∑
σ∈�n

�(σ) exp i(pσ(1)x1 + · · · + pσ(n)xn) + �diffractive(x1, x2, . . . , xn),

(3.12)

where σ denotes an element of the permutation group �n. The non-diffractive part (the Bethe
ansatz) describes a sequence of subsequent two-body processes. Since the wavefunction for
every two-body process can be represented as in (3.10), the coefficients �(σ) and �(σ ′) that
correspond to two permutations σ and σ ′ related by a transposition

σ = {σ(1), σ (2), . . . , σ (i), σ (i + 1), . . . , σ (n)} (3.13)

σ ′ = {σ(1), σ (2), . . . , σ (i + 1), σ (i), . . . , σ (n)}, (3.14)

must satisfy the following relation:

�(σ ′)
�(σ)

= Si,i+1(pσ(i), pσ(i+1)). (3.15)

Consequently, the non-diffractive part of the wavefunction is fully determined by the two-body
S-matrix. This fact allows for the following definition of the quantum integrability (see [15]).

Definition 3. A quantum system that supports scattering is integrable iff the scattering of the
particles is non-diffractive

∀ n : �diffractive(x1, x2, . . . , xn) = 0. (3.16)

In particular, this implies that no particles are being created or annihilated in a scattering
process.

The vanishing of the diffractive part of the wavefunction is an indication of the existence
of further conserved quantities (charges). As has already been mentioned, a general three-body
process is inelastic. If, however, in addition to the conservation laws 1 and 2 there exists a
supplementary condition, e.g.

Q3 = p3
1 + p3

2 + · · · + p3
n = const, (3.17)

then the outgoing momenta must be again a permutation of the incoming ones. A generic n-
body scattering process is non-diffractive if there exist n conserved, algebraically independent
and symmetric in all variables quantities Qr = Qr(p1, . . . , pn), r = 1, . . . , n. The first two
of these charges are usually assumed to correspond to the total momentum and the total energy
of the system. The higher charges Q3, . . . ,Qn are in general eigenvalues of the generators
Q̂3, . . . , Q̂n of a hidden symmetry which is not manifest at the level of the Hamiltonian or
the equations of motion. No general method is known for how to construct the generators
Qr, r � 3 for an integrable system. For integrable spin chains, however, which we will
consider in this paper one can accomplish this by constructing the transfer matrix, or with the
help of the so-called ‘boost’ operator, see [16].
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Yet another possibility for defining the quantum integrability provides the Lax pair. Let
L̂ and Â be two N × N matrices, with the elements being functions of the operators of the
system in question, such that

dL̂

dt
= i(ÂL̂ − L̂Â) (3.18)

is satisfied. The pair {L̂, Â} is called the Lax pair. From relation (3.18) it follows that the time
evolution of L̂(t) is implemented by a unitary transformation generated by Â

L̂(t) = U(Â, t)L̂(0)U †(Â, t). (3.19)

Upon introducing the determinant D̂(λ) = det
(
L̂(t) − λI

)
, one finds that it is time independent

D̂(λ) = det(L̂(t) − λI) = det(U(Â, t)[L̂(0) − λI]U †(Â, t))

= det(L̂(0) − λI) = D̂(0). (3.20)

Calogero has shown [17] that the operator D̂(λ) can be unambiguously defined and that the
following additional relations are satisfied:

[Ĥ , D̂(λ)] = 0, [D̂(λ), D̂(λ′)] = 0. (3.21)

Moreover, D(λ) is, as it follows from the definition, a polynomial of the Nth order in λ and
therefore

D̂(λ) =
N∑

j=0

λjQ̂j . (3.22)

Substituting the above formula into (3.21), one finds the commutation relations

[Ĥ , Q̂j ] = 0 [Q̂j , Q̂k] = 0 j, k = 1, . . . , N. (3.23)

Consequently, the existence of a Lax pair not only allows us to show that the system is
integrable in the sense of definition (2), but it also provides a method for constructing all the
higher charges. Unfortunately, no general procedure is known to determine the corresponding
L̂ and Â matrices. It is worth mentioning that a similar method was used to show [18] that the
classical equations of motion of the IIB superstring theory on AdS5 × S5 are integrable. This,
in turn, allowed to construct the algebraic curve of the AdS/CFT correspondence [19–21].

None of the attempts to define the quantum integrability discussed above are general
enough to be considered as the final definition. Together, however, they portray plausibly of
what integrability means at the quantum level. Since in this paper we will mainly discuss the
spin chains, it is convenient to assume definition (3) as the criterion of integrability.

3.2. The S-matrix and the Yang–Baxter equation

In this section we will generalize the concept of the S-matrix to the scattering processes with
different types of particles. We will also formulate consistency conditions that the S-matrix of
an integrable system must satisfy.

Let us consider an integrable system with n particles that according to their ‘flavour’ can
be divided into l groups. By flavour we mean a value of same additional charge, e.g. spin,
electrical charge, etc. Let 1 and 2 be two such particles that carry the flavours f1, f2 and the
momenta k1, k2, respectively. The following two scattering channels are possible2:

{f ′
1, f

′
2, k

′
1, k

′
2} = {f2, f1, k2, k1}, {f ′

1, f
′
2, k

′
1, k

′
2} = {f1, f2, k2, k1}. (3.24)

2 Here we do not consider flavour-changing processes.
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The first scattering channel corresponds to the transition, whereas the second corresponds to
the reflection of the particles. The definition of the corresponding two-body S-matrix must
incorporate the additional quantum numbers f1andf2

S12(p1, p2) �→ S
f ′

1f
′
2

f1f2
(p1, p2). (3.25)

A scattering process of n particles may be decomposed into a sequence of two-body scatterings.
Since the latter are non-diffractive, the momenta of the outgoing particles must be a permutation
of the incoming ones. Every outgoing configuration of the particles may be, however, achieved
in many physically distinct ways similarly as the ordered set {2, 3, 1} can be obtained by
different sequences of transpositions

{2, 3, 1} = Z1Z2Z1Z2{1, 2, 3} = Z2Z1{1, 2, 3} = · · · . (3.26)

Here Zi denotes a transposition of the two neighbouring sites i and i + 1. Using the property

Z2
i = I, (3.27)

both sequences in (3.26) are equivalent if

Z1Z2Z1 = Z2Z1Z2. (3.28)

The S-matrix must be consistently defined with respect to the identities (3.27) and (3.28). In
the case of (3.27) this implies that∑

a,b

S
f ′

1f
′
2

ba (p2, p1)S
ab
f1f2

(p1, p2) = δ
f ′

1
f1

δ
f ′

2
f2

, (3.29)

where the sum runs over the two possible intermediate states {a, b} = {f1, f2} and
{a, b} = {f2, f1}. Physically, equation (3.29) implies that two subsequent scattering processes
of the same particles are equivalent to no scattering at all, see figure 2. The identity (3.28), on
the other hand, is reflected in the following cubic relation between S-matrices:

S
f ′

1f
′
2

bc (p2, p3)S
f ′

3c

af3
(p1, p3)S

ab
f1f2

(p1, p2) = S
f ′

3f
′
2

c̃ã (p1, p2)S
c̃f ′

1

f1b̃
(p1, p3)S

ãb̃
f2f3

(p2, p3), (3.30)

with the indices a, b, c, ã, b̃ and c̃ being summed over3. Relation (3.30) is the celebrated
Yang–Baxter equations. It implies that in a non-diffractive scattering process the sequence of
the two-body scattering processes does not matter, see figure 2.

Formulae (3.29) and (3.30) are sufficient4 to define consistently the scattering of n
particles. This follows from the fact that the permutation group of n elements �n may
be defined with help of the 2-cycles Zi, i = 1, . . . , n − 1 introduced above. Two arbitrary Zi

and Zj obey

(ZiZj )
p(i,j) = I, (3.31)

where

p(i, j) =
⎧⎨
⎩

1 i = j

3 |i − j | = 1
2 |i − j | > 1.

(3.32)

The first two cases correspond to the identities (3.29) and (3.30). When |i − j | > 1 it follows
from formula (3.31) that 2-cycles commute, which is trivially satisfied by the S-matrices

S
f ′

i f
′
i+1

fifi+1
(pi, pi+1)S

f ′
j f

′
j+1

fj fj+1
(pj , pj+1) = S

f ′
j f

′
j+1

fj fj+1
(pj , pj+1)S

f ′
i f

′
i+1

fifi+1
(pi, pi+1). (3.33)

3 In the presence of the fermionic particles both (3.29) and (3.30) must be supplemented with extra minus signs.
4 It should be stressed, however, that these two relations do not imply non-diffractive scattering. Indeed, examples
are known where the two-body S-matrices satisfy both conditions, but the system is not integrable.
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S

1p p2 p3 1p p2
p3

1pp2
p3 p2 1p

S1

S2 S1
S2

S2
S= =

S

p21p 1p p2

p21p

1

p3

Figure 2. A schematic representation of relations (3.29) and (3.30).

3.3. Integrable spin chains

In this section we will apply the previously discussed concepts to the case of spin chains. The
latter constitute an important subgroup among the integrable models. Moreover, the asymptotic
integrability in the N = 4 gauge theory discussed in section 4 is based on identifying the
dilation operator with a Hamiltonian of an integrable long-range spin chain.

The Hilbert space of a spin chain of length L is a tensor product of L local quantum
spaces V

H = V ⊗ V ⊗ · · · ⊗ V. (3.34)

Each single quantum space V is a module of the algebra A.5 A spin (particle) is an element of
this module

ρA ∈ V, (3.35)

where A denotes the index with respect to the algebra A. On the Hilbert space H one defines
the Hamiltonian Ĥ

Ĥ =
L−1∑
j=1

Ĥi,i+1, (3.36)

where Ĥi,i+1 acts only on the ith and the (i + 1) th quantum spaces

· · · ⊗ V ⊗ V︸ ︷︷ ︸
i i+1

⊗ · · · . (3.37)

Additionally, the Hamiltonian must commute with the generators of the symmetry algebra

[H,A] = 0. (3.38)

In general one can impose two types of the boundary conditions on the spin chains

(i) the open boundary conditions if the last spin L interacts only with preceding (L − 1)th
spin;

(ii) the closed boundary conditions if the last spin L is assumed to interact with both the
(L − 1)th spin and the first spin in the chain.

5 Further we will only consider spin chains for which the algebra A coincides with the symmetry algebra of the
Hamiltonian.
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The second case corresponds to a spin chain on a circle and consequently every local
quantity �j must be related to �j+L and the domain of summation in (3.36) is extended to
include L. In this paper we will confine ourselves to periodic boundary conditions for which
�j = �j+L.

The quantum integrability of a spin chain is understood in the sense of definitions 2 or 3.
In this case it is fairly simple to prove the equivalence of the both definitions. The operators

Q̂r : H �→ H r = 3, . . . , L, (3.39)

which commute with the Hamiltonian Ĥ are non-local and they act on r neighbouring sites,
that is Q̂r acts on

· · · ⊗ V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
i i+1 i+r−1

⊗ · · · . (3.40)

A famous example of an integrable spin chain is the su(2) Heisenberg chain, for which the
spin takes only two values and the corresponding quantum space is assumed to be

V = C
2. (3.41)

The basis in V is spanned by two states: spin + 1
2 and spin − 1

2 particles, which we will denote
by |↑〉 and |↓〉 in what follows. The Hamiltonian can be written in the following form:

Ĥ =
L∑

i=1

1

4
(−→σ i · −→σ i+1 − 1), (3.42)

with the corresponding ground state composed of L spin-up states

Ĥ |↑〉 ⊗ · · · |↑〉 = 0. (3.43)

Excited states are obtained by replacing some + 1
2 spins by the − 1

2 particles6. For M excitations
(magnons) the basis is spanned by

|x1, . . . , xM〉 = |↑〉 ⊗ · · · ⊗ |↑〉︸ ︷︷ ︸
x1−1

⊗|↓〉 ⊗ |↑〉 ⊗ · · · ⊗ |↑〉︸ ︷︷ ︸
x2−x1−1

⊗|↓〉 ⊗ · · · (3.44)

1 � x1 < x2 < · · · < xM � L, x1, . . . , xM = 1, 2, . . . . (3.45)

Consequently, each eigenvector |�〉 can be decomposed in this basis

|�〉 =
∑

1�x1<···<xM�L

�(x1, . . . , xM)|x1, . . . , xM〉. (3.46)

It is here where the integrability plays its profound role and constraints the coefficients
�(x1, . . . , xM) to be determined purely by the Bethe ansatz7

�(x1, . . . , xM) =
∑

σ∈�M

ψ(σ) exp

⎛
⎝i

M∑
j=1

pσ(j)xj

⎞
⎠ , (3.47)

with the scattering of two magnons, in accordance with (3.15), being determined by the
S-matrix

ψ(σ ′)
ψ(σ)

= Sj,j+1(pσ(j), pσ(j+1)) = −1 + eipσ(j)+ipσ(j+1) − 2 eipσ(j+1)

1 + eipσ(j)+ipσ(j+1) − 2 eipσ(j)
. (3.48)

6 We assume here that the number of the spin-up particles n↑ is bigger than or equal to the number of spin-down
particles n↓ = L − n↑. If n↓ > n↑ one should take |↓〉 ⊗ · · · |↓〉 as the reference vacuum.
7 One can also reverse this logic and show that the state (3.46) together with the ansatz (3.47) is under the condition
(3.48) an eigenstate of the Hamiltonian (3.42). Moreover, it can also be proven [22] that all 2L states can be
parametrized like this.
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It is convenient to introduce the so-called rapidities

uk = 1

2
cot

pk

2
k = 1, 2, . . . , M, (3.49)

which allow to write the S-matrix elements in the algebraic form

Sj,j+1(uσ(j), uσ(j+1)) = uσ(j) − uσ(j+1) − i

uσ(j) − uσ(j+1) + i
. (3.50)

The periodic boundary conditions imply that the wavefunctions must obey

�(x1, . . . , xM) = �(x2, . . . , xM, x1 + L), (3.51)

which in turn leads to the celebrated Bethe equations(
uk + i

2

uk − i
2

)L

=
M∏

j=1,j =k

uk − uj + i

uk − uj − i
k = 1, 2, . . . ,M. (3.52)

In the case of the Heisenberg spin chain the excitations are all of the same type, once the
reference vacuum has been chosen. For the spin chains with generic underlying symmetry
algebras the module V is generally l-dimensional. Let us consider such a generic spin chain
with K1 particles of type 1, K2 particles of type 2, etc so that

K1 � K2 � · · · � Kl, K1 + K2 + · · · + Kl = L. (3.53)

Physical choice corresponds to picking up the most numerous particles (of type 1) as the
reference vacuum8

|0〉I = |1〉 ⊗ · · · ⊗ |1〉︸ ︷︷ ︸
L

, (3.54)

and to consider the remaining particles as the excitations on this vacuum. This choice, however,
breaks the underlying symmetry of the module. The excitations transform under the residual
symmetry. Under the assumption that the spin chain is integrable an arbitrary eigenstate of
the Hamiltonian can be represented by a partial state |A1 . . . Ak〉I (with Ai = 2, 3, . . . , l) and
a set of momenta {p1, . . . , pk}

|�〉 = ŜI|A1 · · · Ak〉I, (3.55)

with

|A1 · · · Ak〉I =
∑

1�i1�i2�···�ik�L

eip1i1 eip2i2 · · · eipkik |A1, . . . , Ak; i1, . . . ik〉I, (3.56)

and

|A1, . . . , Ak; i1, . . . , ik〉I = |1〉 ⊗ · · · ⊗ |1〉︸ ︷︷ ︸
i1−1

⊗|A1〉 ⊗ |1〉 ⊗ · · · ⊗ |1〉︸ ︷︷ ︸
i2−i1−1

⊗|A2〉 ⊗ · · · . (3.57)

The operator ŜI is the many-body scattering matrix of the first level, which due to the
integrability can be written as a sum over all the possible permutations

ŜI =
∑
σ∈�k

ŜI
σ , (3.58)

with the permutation σ corresponding to a given sequence of the two-body processes

ŜI
σ =

∏
(i,j)∈σ

ŜI
ij , |A′

2A
′
1〉I =

∑
A1,A2

(
SI

12

)A′
2A

′
1

A1A2
|A1A2〉I. (3.59)

8 Hereby we assume that this choice is consistent with respect to the Hamiltonian.
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It should be stressed that the S-matrix (scattering operator) ŜI
12 is a (l − 1)2 × (l − 1)2-

dimensional matrix governing the scattering of two excitations of different flavours. The
above construction can be, however, repeated after the most numerous excitations (of type 2)
are chosen to be reference vacuum of the spin chain with M = L − K1 sites

|0〉II = | 2 · · · 2︸ ︷︷ ︸
M

〉I. (3.60)

The remaining excitations Bi = 3, 4, . . . , l on this vacuum scatter with the S-matrix of the
second level ŜII, which can be decomposed similarly to (3.58) and (3.59). Repeating this
procedure (l −1) times results in clearing entirely the spin chain from excitations. It should be
noted that the action of the S-matrix on the first level vacuum is trivial, whereas the action on
the vacuum of the second level results in a non-trivial scalar phase9. In the first approximation
(the first level spin chain) one assumes all of the excitations Ai, i = 2, . . . , l to scatter with the
same phase as the particles of type 2. The error committed in this way is partially compensated
by considering scattering processes on the vacuum of the second level, where the remaining
(l − 3) excitations scatter with a phase different from the one for the preceding level. The
requirement of consistency between the first and the second level scattering allows us to find
explicitly the form of the second level S-matrix. Recursive application of this method allows
us to determine the S-matrices of the kth level, with k = 1, 2, . . . , l − 1. The periodicity
conditions for each of these spin chains lead to the nested Bethe equations. This method is
known in the literature as the nested Bethe ansatz [23].

The scattering in generic integrable spin chains (with arbitrary values of the spin or with
non-compact symmetry algebras) can be uniformly described with the concept of the R-matrix.
In the following we will only consider systems with the underlying translation invariance. Let
ρA and ρB ∈ V be two particles with the spectral parameter u1 and u2 respectively. The
R-matrix is defined as an operator that commutes the both elements of the corresponding
modules

ρ̃B̃ (u2) ⊗ ρ̃Ã(u1) = RAB
ÃB̃

(u1 − u2)ρA(u1) ⊗ ρB(u2). (3.61)

Since commuting the modules twice should be equivalent to the action of the identity operator,
we impose

RB̃Ã
CD(u2 − u1)R

AB
ÃB̃

(u1 − u2) = δA
CδB

D. (3.62)

Similarly to (3.30) the consistency of the scattering processes requires the R-matrix to obey
the Yang–Baxter equation

RÃB̃
FG(u2 − u3)R

C̃G
EC (u1 − u3)R

EF
AB (u1 − u2) = RC̃B̃

GE(u1 − u2)R
GÃ
AF (u1 − u3)R

EF
BC (u2 − u3).

(3.63)

Finally, the R-matrices acting on separated modules commute with each other. To a spin chain
with L lattice sites one can associate the monodromy matrix

{Te(u)}AA1A2···AL

BB1B2···BL
= R

AAL

CL−1BL
(u)R

CL−1AL−1
CL−2BL−1

(u) · · · RC1A1
BB1

(u), (3.64)

which can be intuitively interpreted as a quantity describing an external ‘ghost’ particle
circulating around the spin chain. The external quantum space Ve is also assumed to be a
module of the symmetry algebra A, though this module must not necessarily coincide with
the physical one V . The trace of the monodromy matrix with respect to the external quantum
space

T̂ (u) = {Te(u)}AA1A2···AL

AB1B2···BL
(3.65)

9 Here we do not allow for the processes 2 + 2 �→ A1 + A2, with A1 = A2 = 2.
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defines the transfer matrix. If the external quantum space coincides with the physical one, the
transfer matrix becomes a generating matrix of the higher conserved charges

T̂ (f )(u) = Û exp i
∞∑

r=2

ur−1Q̂r , (3.66)

where Û stands for the translation operator

Û = T̂ (f )(0) = P1,2P2,3 · · · PL−1,L. (3.67)

Here Pa,b denotes the permutation operator between the ath and bth vector space. In particular
the Hamiltonian can be represented as follows:

Ĥ = Q̂2 = 1

i

(
(T̂ (f )(u))−1 d

du
T̂ (f )(u)

) ∣∣∣∣
u=0

. (3.68)

As an example, let us consider the XXX s
2

spin chain with the sl(2) symmetry algebra. The
modules V can be classified according to the value of the spin s/2. Let |�〉 be an eigenvector
of the Hamiltonian corresponding to M excitations with the rapidities uii = 1, . . . ,M . The
state |�〉 is also an eigenstate of the fundamental transfer matrix (3.66)

T̂ (f )(u)|�〉 = T (f )(u, u1, . . . , uM)|�〉, (3.69)

with

T (f )(u, u1, . . . , uM) = U exp i
∞∑

r=2

ur−1Qr (3.70)

and

U =
M∏

j=1

uj + i |s|
2

uj − i |s|
2

, Qr = i

r − 1

M∑
j=1

(
1(

uj + i |s|
2

)r−1 − 1(
uj − i |s|

2

)r−1

)
. (3.71)

For the XXX s
2

spin chains T̂ (f )(u) is a polynomial of the order L in u. On the other
hand, the eigenvalue T (f )(u, u1, . . . , uM) exhibits poles that depend on the Bethe roots
uj , j = 1, . . . ,M . Requiring these poles to cancel for arbitrary value of L one finds the
Bethe equations(

uk + i s
2

uk − i s
2

)L

=
M∏

j=1,j =k

uk − uj + i

uk − uj − i
k = 1, 2, . . . , M. (3.72)

The case s = 1 corresponds to the Heisenberg spin chain discussed above.
For the XXX s

2
spin chains it is convenient to introduce, beside the fundamental transfer

matrix, also the auxiliary transfer matrix T̂ (a)(u) by choosing the external quantum space to
be Ve = C

2. It was shown in [24] that there exists an operator Q̂(u) such that

[Q̂(u), Q̂(v)] = [Q̂(u), T̂ (a)(v)] = 0 (3.73)

and (
u + i

s

2

)L

Q̂(u + i) +

(
u − i

s

2

)L

Q̂(u − i) = T̂ (a)(u)Q̂(u). (3.74)

According to the relation (3.73) both T̂ (a)(v) and Q̂(u) can be diagonalized simultaneously.
Let |�〉 be such eigenstate parametrized by the Bethe roots ui, i = 1, . . . ,M . Equation (3.74)
then becomes a functional equation relating the eigenvalue of the auxiliary transfer matrix to
the eigenvalue of the Baxter operator Q̂(u)(

u + i
s

2

)L

Q(u + i) +

(
u − i

s

2

)L

Q(u − i) = T (a)(u)Q(u), (3.75)
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Here, we have suppressed the explicit dependence of the eigenvalues on {ui}. Equation (3.75)
is called the Baxter equation in the literature. Under the following ansatz,

Q(u) =
M∏

j=1

(u − uj ), (3.76)

one re-derives the Bethe equations (3.72).

4. Integrability in the N = 4 super Yang–Mills theory

The discovery of the asymptotic integrability in the planar N = 4 SYM theory has permitted
to compare the observables on the both sides of the correspondence that are not affected
by the wrapping interactions and therefore paved the way for the novel dynamical tests of
the correspondence. In this section we will present the building blocks of the asymptotic
integrability and discuss the asymptotic spectral equations.

4.1. The psu(2, 2|4) super spin chain

4.1.1. Lie superalgebras and superconformal alegbras. In this section we review briefly the
essential definitions and results of the Lie superalgebras, of which we will make use in what
follows.

A Lie superalgebra A is an algebra with a Z2 grading equipped with a multiplication that
obeys the following conditions:

(i) skew-symmetry

∀ a, b ∈ A : (a, b) = −(−1)g(a)g(b)(b, a), (4.1)

(ii) generalized Jacobi identity

∀ a, b, c ∈ A : (−1)g(a)g(c)(a, (b, c)) + (−1)g(a)g(b)(b, (c, a)) + (−1)g(c)g(b)(c, (a, b)),

(4.2)

where g(.) denotes the grade of an element10. The subset

A0 = {a ∈ A : g(a) = 0} (4.3)

is in view of the conditions (4.1) and (4.2) an ordinary Lie algebra. The fermionic component
of A

A1 = {a ∈ A : g(a) = 1} (4.4)

can be interpreted as a linear representation of A0 since

(A0,A1) ∈ A1. (4.5)

Definition 4. A simple Lie superalgebra A for which the representation of its even subalgebra
A0 on its odd part A1 is completely reducible is called a classical Lie superalgebra.

It can be proven that for classical Lie superalgebras the representation of A0 on A1 is either

(i) irreducible, or
(ii) is a direct sum of two irreducible representations of A0.

10 In what follows the multiplication of two fermionic elements will be denoted by { , }.
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This feature allows us to define Lie superalgebras of, correspondingly, the first and the
second kind.

Definition 5. A classical Lie superalgebra A equipped with a non-degenerate bilinear
invariant form is called a basic Lie superalgebra.

Similarly to the case of the classical semi-simple Lie algebras one can introduce for the basic
Lie superalgebras the Cartan subalgebra H and the root system {Eα(i)}, i = 1, . . . , n such that

(Hi,Hj ) = 0,

(Hi, E±α(j)) = ±MijE±α(j), (4.6)

(Eα(i), E−α(j)) = δijHi,

where Mij is the Cartan matrix in the {Hi} basis of the Cartan subalgebra. However, in
contradistinction to the case of Lie algebras, the choice of the Dynkin diagram is not unique.
This is due to the fact that there exists a residual freedom in the choice of the odd (fermionic)
roots. A complete classification of the fundamental classical Lie superalgebras was given in
[25].

A superconformal algebra is defined to be a Lie superalgebra A for which the even
part A0 contains the conformal subalgebra so(d, 2) that is spinorially represented on the odd
component A1.

4.1.2. The psu(2, 2|4) superconformal algebra and its representations. The su(2, 2|4) Lie
superalgebra is a superalgebra of the first type, which in the Kac classification corresponds
to the A(3, 3) ⊕ 1 Lie superalgebra, see [26] for a pedagogical discussion of this issue. The
bosonic (even) component is spanned by su(2, 2) ⊕ su(4) ⊕ u(1). Taking the isomorphism
su(2, 2) � so(4, 2) into account one concludes that su(2, 2|4) is a superconformal algebra
in four dimensions (the requirement of the spinor representation of the so(4, 2) on the odd
component of the superalgebra will be met by the explicit construction below). The set of
generators of su(2, 2|4) is spanned by{

Lα
β, L̄α̇

β̇
, Pα̇β,Kαβ̇,D;Ra

b ;C|Qa
α, Q̄aα̇, Sα

a , Sα̇a
}
. (4.7)

Here, the generators carry ‘fermionic’ indices of su(2) and su(4) respectively and are assumed
to transform canonically. The non-vanishing commutation relations of the su(2, 2|4) are given
by

{[D,Pα̇β] ;−[D,Kαβ̇ ]} = {Pα̇β ;Kαβ̇}, (4.8){[
D,Qa

α

] ; [D, Sα
b

] ;−[
D, Q̄α̇a

] ;−[D, S̄aβ̇ ]
} = 1

2

{
Qa

α; Sα
b ; Q̄α̇a; S̄aβ̇

}
, (4.9)

[Kαβ̇, Pγ̇ δ] = δ
β̇
γ̇ Lα

δ + δα
γ L̄

β̇

δ̇
+ δα

γ δ
β̇

δ̇
D, (4.10){

Q̄α̇a,Q
b
β

} = δb
aPα̇β,

{
S̄aα̇, S

β

b

} = δa
bK

βα̇,[
Sα

a , Pβ̇γ

] = δα
γ Q̄β̇a, [Kαβ̇, Q̄γ̇ c] = δ

β̇
γ̇ Sα

c ,

[S̄aα̇, Pβ̇γ ] = δα̇
β̇
Qa

γ ,
[
Kαβ̇,Qc

γ

] = δα
γ S̄cβ̇ ,

(4.11)

{
Sα

a ,Qb
β

} = δb
aL

α
β + δα

βRb
a + 1

2δb
aδ

α
β (D − C), (4.12)

{S̄aα̇, Q̄β̇b} = δa
b L̄

α̇
β̇

− δα̇
β̇
Ra

b + 1
2δa

b δ
α̇
β̇
(D + C). (4.13)

It follows from the above relations that the generator C plays the role of the central charge
and consequently that su(2, 2|4) is reducible. The irreducible part of this algebra, psu(2, 2|4),
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Figure 3. Beauty diagram.

can be obtained by considering representations with vanishing central charge. It should be
stressed, however, that the psu(2, 2|4) algebra contrary to the su(2, 2|4) does not possess the
defining 8 × 8 matrix representation.

The above commutation rules are also valid after quantization, with all the generators
except for Lα

β, L̄α̇
β̇

and Ra
b receiving quantum corrections

psu(2, 2|4) � J : J �→ Ĵ (g). (4.14)

At weak coupling one expects the following expansion:

Ĵ (g) =
∞∑

j=1

Ĵ 2j g
2j . (4.15)

At the one-loop level there is a particularly useful choice of the corresponding Dynkin diagram
of the su(2, 2|4) superalgebra, see figure 3. The positive and negative roots that correspond
to this diagram are given by

J + ∈ {
Kαβ̇, Sα

a , S̄aα̇, Lα
β(α < β), L̄α̇

β(α̇ < β̇), Ra
b (a < b)

}
, (4.16)

J 0 ∈ {
Lα

β(α = β), L̄α̇
β̇
(α̇ = β̇), Ra

b (a = b),D,C
}
, (4.17)

J− ∈ {
Pαβ̇,Qa

α, Q̄α̇a, L
α
β(α > β), L̄α̇

β(α̇ > β̇), Ra
b (a > b)

}
. (4.18)

In the N = 4 SYM theory only non-compact and infinite representations of this
superalgebra are of physical relevance, which is due to the presence of derivatives of fields
(each field can be differentiated infinitely many times). Each state in theory can be identified
through the following set of Dynkin labels:

{�, s1, s2, q1, p, q2, B,L}, (4.19)

where � is the eigenvalue of the dilatation operator, the weights [s1, s2] classify the spinor
representations of the Lorentz algebra so(3, 1) = su(2) × su(2) and [q1, p, q2] correspond to
the flavour algebra so(6). The relation of these labels to the eigenvalues of the Cartan algebra
elements (4.17) is given by the following formulae:

s1 = L2
2 − L1

1, s2 = L̄2
2 − L̄1

1, (4.20)

q1 = R2
2 − R1

1, p = R3
3 − R2

2, q2 = R4
4 − R3

3 . (4.21)

The remaining quantities B and L are not related to the weights of the su(2, 2|4) superalgebra
and can be seen as eigenvalues of the external automorphisms. The length L counts the number
of fields in the trace (2.29) and is equal to 1 independently of the value of k for each field in
(2.28). The hypercharge B, on the other hand, measures the hyperspin of the multiplet (2.28)
and is a multiple of 1

2 . All physical operators of the theory can be classified in the highest
weight multiplets. Each such multiplet is defined by the state of highest weight (the so-called
primary field) Ô = |O〉

∀ Ĵ + : Ĵ +|O〉 = 0. (4.22)
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Other states of a given multiplet can be obtained by collective action of the lowering operators
Ĵ− on |O〉

Ĵ−
1 Ĵ−

2 · · · Ĵ−
k |O〉. (4.23)

An important example of a highest weight multiplet are the 1
2 -BPS operators

|Z〉L = Tr(ZL), Z = �34. (4.24)

These highest weight states are additionally annihilated by a half of the supersymmetry
generators and consequently their scaling dimension is protected and does not receive quantum
corrections, see discussion in section 7.1.

For the purpose of representing fields it is very convenient to use the oscillator realization
of the psu(2, 2|4). The oscillators are defined as follows:

(a) bosonic
(
aα, a†

α

)
corresponding to the one copy of the su(2) subalgebra ,

(b) bosonic
(
bα̇, b†

α̇

)
corresponding to the second copy of the su(2) subalgebra ,

(c) fermionic
(
ca, c†a

)
of the su(4) subalgebra

and are assumed to obey the following commutation relations:[
aα, a†

β

] = δα
β

[
bα̇, b†

β̇

] = δα̇
β̇

{
ca, c†b

} = δa
b . (4.25)

The elements of the psu(2, 2|4) Lie superalgebra (for g = 0) can be then represented through

Lα
β = a†

βaα − 1
2δα

β a†
γ aγ , L̄α̇

β̇
= b†

β̇
bα̇ − 1

2δα̇
β̇

b†
γ̇ bγ̇ ,

D = 1 + 1
2 a†

γ aγ + 1
2 b†

γ̇ bγ̇ , Ra
b = c†bca − 1

4δa
b c†ccc,

(4.26)

C = 1 − 1
2 a†

γ aγ + 1
2 b†

γ̇ bγ̇ − 1
2 c†ccc, B = 1 + 1

2 a†
γ aγ − 1

2 b†
γ̇ bγ̇ , (4.27)

Qa
α = a†

αca, Q̄α̇a = b†
α̇c†a, Pαβ̇ = a†

αb†
β̇
,

Sα
a = c†aaα, S̄α̇a = bα̇ca, Kαβ̇ = aαbβ̇ .

(4.28)

Using formulae (4.25) one can easily show that the above realization of the generators obeys
the commutation relations (4.8)–(4.13). The set of physical excitations on the vacuum state
(which is annihilated by all ‘undaggered’ oscillators) is spanned by states for which the central
charge

C = 1 − 1
2 a†

γ aγ + 1
2 b†

γ̇ bγ̇ − 1
2 c†ccc (4.29)

vanishes. One can easily check that this set coincides with the set of the irreducible
fields (2.28)

DkF � (a†)k+2(b†)k(c†)0|0〉,
Dk� � (a†)k+1(b†)k(c†)1|0〉,
Dk� � (a†)k(b†)k(c†)2|0〉, (4.30)

Dk�̇ � (a†)k(b†)k+1(c†)3|0〉,
DkḞ � (a†)k(b†)k+2(c†)4|0〉.

Unfortunately, a very inconvenient feature of this definition is that the vacuum state itself does
not belong to this class

C|0〉 = 1. (4.31)

One way to overcome this difficulty is to replace the c3 and c4 oscillators thorugh dȧ , ȧ = 1, 2

d†
1 = c4, d†

2 = c3. (4.32)
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In this notation the Z field is annihilated by all oscillators and can therefore serve as a vacuum
state. The consequence of such a redefinition is the breakdown of the su(4) symmetry to
su(2) × su(2). On the other hand, the central charge can be rewritten in a more transparent
form

C = 1
2 (Nb + Nd) − 1

2 (Na + Nc), (4.33)

where N denotes the counting operators (e.g. Na = a†
γ aγ ). It follows from (4.33) that the

excitations on the vacuum state |ZL〉 := |Z〉 ⊗ · · · ⊗ |Z〉︸ ︷︷ ︸
L

can only be created pairwise

(A†)M(Ā†)M |ZL〉, (4.34)

with A = {a1, a2, c1, c2} and Ā = {b1, b2, d1, d2}. There are consequently 4 × 4 = 16
fundamental excitations on each lattice site |Z〉. Each field in (4.30) is either a fundamental
excitation or can be represented by a multiple excitation (a composition of the fundamental
excitations) of a lattice site.

4.1.3. One-loop Bethe equations. It was shown in [4] that the one-loop dilatation operator
D2 (see (4.15)) may be identified with the Hamiltonian of an integrable psu(2, 2|4) super spin
chain. The Bethe ansatz techniques for integrable spin chains with general simple Lie algebras
as the symmetry algebras have been developed in [27, 28] and subsequently generalized to
the case of superalgebras [29]. This allowed Beisert and Staudacher [4] to write down the
one-loop Bethe equations of the planar N = 4 SYM theory.

As it was explained in section 2.1.4, in the planar limit it is sufficient to consider only the
single trace operators. The eigenstates of the one-loop dilatation operator D̂2� = γ �

2 (g)�

are linear combinations of the basis states (2.28)

� = a1 Tr(�1 · · ·�L) + a2 Tr(�′
1 · · · �′

L) + · · · . (4.35)

Since the length operator commutes at the one-loop order with the dilatation operator, only
basis states of equal length need to be taken into account. The complete one-loop dilatation
operator was found in [3]. Remarkably, it acts only on neighbouring fields in each trace11

D̂2 =
L∑

i=1

Ĥi,i+1, (4.36)

which allows us to identify the single trace operators with states of a closed spin chain

Tr(�1 · · · �L) �→ |�1 · · · �L〉 := |�1〉 ⊗ · · · ⊗ |�L〉. (4.37)

It follows from the cyclicity of the trace that

|�1 · · · �k�k+1 · · · �L〉 = (−1)(�k+1···�L�1···�k)|�k+1 · · · �L�1 · · · �k〉, (4.38)

where the prefactor (−1)(�k+1···�L�1···�k) corresponds to the overall sign of the permutations of
fermionic fields. The integrability of D̂2 was shown in [4] by an explicit construction of the
psu(2, 2|4) R-matrix.

Let H be a Hamiltonian of an integrable super spin chain with sl(K|N) symmetry algebra.
The diagonalization of this operator can be performed using the techniques of nested Bethe
ansatz, as discussed in section 3.3. For arbitrary values of K and N and arbitrary spin
representation it is, however, more convenient to use transfer matrices. The transfer matrices

11 The explicit form of Ĥi,i+1 can be found in [3].
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for such spin chains were constructed in [27, 28]. The corresponding Bethe equations can be
casted in the following form [29]:(

uj + i
2VKj

uj − i
2VKj

)L

=
M∏

l=1,j =j

uj − ul + i
2MKj Kl

uj − ul − i
2MKj Kl

, (4.39)

where MKj Kl
denotes the symmetric Cartan matrix and VKj

is the spin representation vector.
There are all together M excitations (with respect to the vacuum state), among which K1 of
the type 1, K2 of the type 2, etc. With the help of the Bethe roots uj one can parametrize each
conserved quantity

(i) the momentum (the eigenvalue of the translation operator on the lattice, see (3.67))

eiP = ei(p1+···+pM) =
M∏

j=1

uj + i
2VKj

uj − i
2VKj

, (4.40)

(ii) the energy

E = cL ±
M∑

j=1

(
i

uj + i
2VKj

− i

uj − i
2VKj

)
, (4.41)

(iii) the higher conserved charges

Qr = crL ±
M∑

j=1

(
i(

uj + i
2VKj

)r−1 − i(
uj − i

2VKj

)r−1

)
. (4.42)

The constants c and cr depend on the choice of the Dynkin diagram. Physically they
correspond to the values of the energy and the conserved higher charges of the chosen vacuum
state.

The psu(2, 2|4) superalgebra is a real form of the complex sl(4|4) superalgebra and
therefore the spectral equations of an integrable spin chain with the psu(2, 2|4) as the
underlying symmetry algebra should also be contained in (4.39). The highest weight state
corresponding to the Dynkin diagram presented in the previous section is a 1

2 -BPS field and as
such is a suitable choice of the vacuum. The set of all excitations on this vacuum is a closed
sector of the theory. Moreover, every highest weight state can be represented in the form
(4.34), which implies that this set coincides with the excitation sector of the full planar N = 4
SYM theory. The choice of vacuum breaks, however, the original psu(2, 2|4) symmetry. The
residual symmetry is

su(2|2) ⊗ su(2|2) (4.43)

and transforms the sets
{
a†

1, a†
2, c†1, c†2

}
and

{
b†

1, b†
2, d†

1, d†
2

}
in (4.34), respectively. The central

charge Ĥ of both superalgebras should be identified with the anomalous dilatation operator
δD̂ = D̂ − D0 in the following way (see [12]):

Ĥ = M

2
+

1

2
δD̂. (4.44)

It should be stressed, however, that the overall central charge of the residual symmetry algebra
is 2Ĥ . The first level S-matrix can be decomposed into a product of two su(2|2)S-matrices

Ŝpsu(2,2|4)(p1, p2) = S0(p1, p2) · (Ŝsu(2|2)(p1, p2) ⊗ ˆ̄Ssu(2|2)(p1, p2)), (4.45)

where S0(p1, p2) is a scalar function.
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The form of the Ŝsu(2|2)S-matrices in the asymptotic regime have been derived recently
in [30]. The derivation makes use of the central extension of the su(2|2), where the additional
central elements are related to some braiding element which modifies the coalgebra structure,
see [31]. This S-matrix is also invariant under a Yangian [32], see also [33].

The one-loop Bethe equations can be found directly form (4.39). The Cartan matrix
corresponding to the Dynkin diagram presented in the previous section reads

MKj ,Kl
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 +1 0 0 0 0 0
+1 0 −1 0 0 0 0
0 −1 +2 −1 0 0 0
0 0 −1 +2 −1 0 0
0 0 0 −1 +2 −1 0
0 0 0 0 −1 0 +1
0 0 0 0 0 +1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.46)

whereas the representation vector takes the following form:

V = (0, 0, 0, 1, 0, 0, 0). (4.47)

Thus, the one-loop spectral equations of the planar N = 4 SYM are given by

1 =
K1∏

j=1,j =k

u1,k − u1,j − i

u1,k − u1,j + i

K2∏
j=1

u1,k − u2,j + i
2

u1,k − u2,j − i
2

1 =
K1∏
j=1

u2,k − u1,j + i
2

u2,k − u1,j − i
2

K3∏
j=1

u2,k − u3,j − i
2

u2,k − u3,j + i
2

,

1 =
K2∏
j=1

u3,k − u2,j − i
2

u3,k − u2,j + i
2

K3∏
j=1,j =k

u3,k − u3,j + i

u3,k − u3,j − i

K4∏
j=1

u3,k − u4,j − i
2

u3,k − u4,j + i
2(

u4,j + i
2

u4,j − i
2

)L

=
K3∏
j=1

u4,k − u3,j − i
2

u4,k − u3,j + i
2

K4∏
j=1,j =k

u4,k − u4,j + i

u4,k − u4,j − i

K5∏
j=1

u4,k − u5,j − i
2

u4,k − u5,j + i
2

(4.48)

1 =
K6∏
j=1

u5,k − u6,j − i
2

u5,k − u6,j + i
2

K5∏
j=1,j =k

u5,k − u5,j + i

u5,k − u5,j − i

K4∏
j=1

u5,k − u4,j − i
2

u5,k − u4,j + i
2

1 =
K7∏
j=1

u6,k − u7,j + i
2

u6,k − u7,j − i
2

K5∏
j=1

u6,k − u5,j − i
2

u6,k − u5,j + i
2

,

1 =
K7∏

j=1,j =k

u7,k − u7,j − i

u7,k − u7,j + i

K2∏
j=1

u7,k − u6,j + i
2

u7,k − u6,j − i
2

.

One notes that the above system of equations is symmetric with respect to the main equation
(for the momentum-carrying roots u4). This reflects the decomposition of the S-matrix (4.45).

Since the trace is cyclic (see (4.38)) the total momentum must be a multiplicity of 2π and
consequently the Bethe equations must be supplied with the condition

1 = eiP =
K4∏
j=1

u4,j + i
2

u4,j − i
2

. (4.49)
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K1

a†
2a

1

K2

a†
1c

1

K3

c†1c
2

K4

c†2d
†
1

K5

d†
2d

1

K6

b†
1d

2

K7

b†
2b

1

Figure 4. Beauty diagram with the positive simple roots and the corresponding excitation numbers.

The excitation numbers {Ki}, i = 1, . . . , 7 appearing in the above equations are uniquely
determined through the Dynkin labels of a state12:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K1

K2

K3

K4

K5

K6

K7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2�0 − 1

2 (L − B) − 1
2 s1

�0 − (L − B)

�0 − 1
2 (L − B) − 1

2p − 3
4q1 − 1

4q2

�0 − p − 1
2q1 − 1

2q2

�0 − 1
2 (L + B) − 1

2p − 1
4q1 − 3

4q2

�0 − (L + B)

1
2�0 − 1

2 (L + B) − 1
2 s2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.50)

As mentioned before, the anomalous part of the dilatation operator can be identified with the
Hamiltonian of the psu(2, 2|4) super spin chain and thus the energies of the states of this spin
chain should be proportional to the eigenvalues of the dilatation operator. Explicitly, after
solving the Bethe equations13 the anomalous dimension can be determined from

γ = 2g2
K4∑
j=1

(
i

uj + i
2

− i

uj − i
2

)
+ O(g4), (4.51)

as follows from (4.41). For the choice of the representation vector made in (4.47) only
the excitations (magnons) of type 4 carry the momentum. This allows for the following
interpretation. A magnon is created by exciting the fourth node of the Dynkin diagram, which
corresponds to the action of the fourth positive root on the vacuum state Tr

(
ZL

)
, see figure 4.

Exciting subsequently the neighbouring nodes changes the flavour of the magnon, but does not
create any new ‘particles’. In a similar manner, one can excite further nodes (though always
those adjacent to the already excited ones) and as a result the following inequalities must be
satisfied:

K1 � K2 � K3 � K4 � K5 � K6 � K7. (4.52)

A detailed study of the psu(2, 2|4) representations [34] shows that no adjacent excitation
numbers Ki and Ki+1 may be equal.

4.2. Wrapping interactions

The anomalous dimensions at higher orders of perturbation theory can be determined in two
different manners. The first method amounts to evaluating the correlation functions (2.18)
or (2.20) of the corresponding operators to the desired order. Alternatively, as shown in
[35], one can derive the dilatation operator using some further constraints (BMN scaling [36],

12 These relations can be derived from the weights of the corresponding oscillators.
13 The roots uj are in general complex. Since the Bethe equations are invariant under complex conjugation, the
complex solutions form pairs (uj , u

∗
j ).
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integrability, the closure of the symmetry algebra, etc). For the full planar N = 4 SYM theory
this is a very tedious task already at the two-loop order and this method was only applied in
some closed subsectors [37–39].

As it was explained in section 2.1.3 Feynman diagrams of a U(N) gauge theory consist
of the ‘fat’ propagators and can be classified according to the genus of the associated surface.
In each genus class one can furthermore distinguish the so-called wrapping diagrams. In what
follows, we will discuss these diagrams in the planar limit.

Let Ô(x) be a single trace operator, which for the sake of simplicity we will assume to be
built out of two scalar fields

Ô = Tr(�̂1�̂2). (4.53)

The corresponding two-point function can be determined using the well-known formula

〈0|Ô(x)Ô(y)|0〉 = 〈0|Ô0(x)Ô0(y) ei
∫

d4zL̂int(z)|0〉
〈0| ei

∫
d4zL̂int(z)|0〉 (4.54)

and the Wick theorem. In the above formula O0 denote the asymptotic fields and Lint the
interaction part of the Lagrangian. In order to define the wrapping interactions it is convenient
to introduce the so-called spectator fields ψ, ψ̄ , see [40]. The fields ψ are inserted into the
trace O(x) in the following way:

Tr(�̂1(x)�̂2(x)) �→ Tr(ψ(x)�̂1(x)ψ(x)�̂2(x)ψ(x)). (4.55)

Similarly ψ̄ are inserted into Ô(y). The both auxiliary fields ψ und ψ̄ should be contracted
while calculating (4.54) (it should be noted, however, that ψ and ψ̄ are free fields) and their
contraction will be graphically represented by

ψ(x)ψ̄(y) = - - - - - - - -

We exclude, however, such contractions for which two lines of the spectator fields cross each
other. Also two adjacent parallel lines are considered to be equivalent.

A wrapping diagram is defined to be a Feynman diagram such that for every contraction
of the spectator fields all the lines of the spectator fields cross the lines of the other fields.
An example of such diagram is shown in figure 5. Because of their topological definition,
wrapping diagrams can contribute starting from the order O(g2L) only (at lower orders at
least one contraction line of the spectator fields does not cross any contraction line of the
other fields). In some special cases, the wrapping interactions may be delayed even beyond
this order, as for example happens for operators that can be identified within different closed
subsectors and with different corresponding lengths.

As mentioned before, it was possible to determine the dilatation operator to the first few
orders in some simple closed subsectors [37–39]. Thereby it was assumed that the loop order �

is smaller than the length L of a state on which the dilatation operator acts. The reason for this
is precisely the wrapping interactions, which are highly non-local and cannot be determined
through the symmetry algebra. Moreover, the form of the wrapping interactions is different
for different lengths.

4.3. Asymptotic Bethe Ansatz

At higher loops it is currently unknown with Hamiltonian of which integrable spin chain one
should identify the dilatation operator. Despite this fact, based on the analysis of the closed
subsectors [37, 38], a conjecture on the form of the asymptotic all-loop Bethe equations for
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Figure 5. An example of a planar wrapping diagram that contributes to the two-point correlation
function. The grey rectangle represents a single trace operator, which is composed from two
fundamental fields.

the planar N = 4 SYM theory was made in [5], which subsequently, under the assumption of
factorizability of the S-matrix, was rigorously proven in [30].

The Dynkin diagram (Beauty) that we have considered so far is, however, unsuitable for
the purpose of formulating the asymptotic all-loop spectral equations. The reason for this is
that the so(6) subsector, which can be consistently obtained by truncating all except the three
middle nodes of the diagram, is not a closed subsector beyond the one-loop level. Let X ,Y
and Z denote the fields of the so(6) subsector. The following mixing process

XYZ ←→ UV, (4.56)

where U,V denote fermionic fields, must be taken into account already at the two-loop order
(this process lowers also the length of the state, see discussion below). One concludes therefore
that so(6) Dynkin diagram should not appear as a subdiagram of the psu(2, 2|4) at higher loop
order.

A suitable all-loop choice of the psu(2, 2|4) Dynkin diagram is presented in figure 6.
In contrast to the Beauty diagram it contains four rather than two simple positive fermionic
roots. Another pleasant feature of this diagram is that the corresponding vacuum state remains
unchanged

|Z〉L = Tr(ZL). (4.57)

Similarly to the previous case, there are 16 fundamental excitations altogether. We present
them in figure 6, which should be understood as follows. The field X corresponds to a single
excitation of the main (momentum-carrying) node and generally a state in the ith column and
j th row is obtained through exciting once (i − 1) nodes left to the central node and (j − 1)

nodes to the right.
As in the one-loop case, one associates with each single trace operator a state of a closed

spin chain. The all-loop system exhibits, in contradistinction to the usual spin chains, many
novel features. First of all, the length of the spin chain must be smaller than the loop-order,
else the non-local wrapping interactions need to be taken into account and their influence on
the dynamics of the system is currently unknown. Generically, the �-loop Hamiltonian acts
simultaneously on �+1 adjacent lattice sites. A feature that rarely occurs for integrable systems.
In what follows, the regime L > � will be called the asymptotic region and all quantities
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Ȳ

d2b†
1

U

D

Ḋ
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Figure 6. All-loop Dynkin diagram of psu(2, 2|4) together with the 16 fundamental excitations.

defined therein will be marked as asymptotic. Probably the most striking feature of this
asymptotic all-loop spin chain are the fluctuations of length due to the flavor changing mixing
processes, e.g. (4.56). This may seem to invalidate the above definition of the asymptotic
region, however the supersymmetry delays the wrapping interactions for the operators with
lower length mixing with the higher length operators. Despite all these unusual properties
the asymptotic all-loop spin chain seems to be integrable, though this has not been proven
rigorously yet. On the other hand, the perturbative asymptotic integrability for the first few
orders of perturbation theory have been confirmed in some subsectors of the full theory, see
[41] and [5]. Under the assumption that this holds to all-loop order in the asymptotic region,
Beisert have derived [30] the corresponding S-matrix (4.45) up to an overall scalar factor. The
asymptotic scattering matrix due to the assumed integrability remains, in contradistinction
to the Hamiltonian, local also at higher loop orders. Because of the decomposition (4.45) it
suffices to construct one copy of the su(2|2)S-matrix. It turns out, however, that each su(2|2)

algebra must be extended with two additional local charges in order to overcome the very
restrictive particle representations of su(2|2). These additional charges vanish on the physical
states, which in both cases is equivalent to the momentum constraint 1 = eiP = ei(p1+···+pM).
It is interesting to note that after introduction of these charges the corresponding S-matrix is
uniquely determined through the invariance condition

∀ Ĵ ∈ su(2|2) � u(1)2 : [Ĵ ⊗ I + I ⊗ Ĵ , Ŝsu(2|2)(p1, p2)] = 0. (4.58)

As was explained in section 3.3, the Bethe equations can be obtained from the periodicity
conditions of the kth level spin chain, where in this case k = 1, 2, 3, 4 (the total number of
excitations is four).

To formulate these equations it is necessary to introduce, in addition to the rapidity u, the
deformation variables

x(u) = 1

2
u

(
1 +

√
1 − 4g2

u2

)
, x±(u) = x

(
u ± i

2

)
. (4.59)
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The asymptotic all-loop Bethe equations [5, 30] can then be written as

1 = eiP = ei(p1+···+pK4 ) =
K4∏
j=1

x+
4,j

x−
4,j

,

1 =
K2∏ u1,k − u2,j + i

2

u1,k − u2,j − i
2

K4∏
j=1

1 − g2/x1,kx
+
4,j

1 − g2/x1,kx
−
4,j

,

1 =
K2∏

j=1,j =k

u2,k − u2,j − i

u2,k − u2,j + i

K3∏
j=1

u2,k − u3,j + i
2

u2,k − u3,j − i
2

K1∏
j=1

u2,k − u1,j + i
2

u2,k − u1,j − i
2

,

1 =
K2∏ u3,k − u2,j + i

2

u3,k − u2,j − i
2

K4∏
j=1

x3,k − x+
4,j

x3,k − x−
4,j

,

1 =
(

x−
4,k

x+
4,k

)L K4∏
j=1,j =k

(
x+

4,k − x−
4,j

x−
4,k − x+

4,j

1 − g2
/
x+

4,kx
−
4,j

1 − g2
/
x−

4,kx
+
4,j

σ 2(x4,k, x4,j )

)
(4.60)

×
K1∏ 1 − g2

/
x−

4,kx1,j

1 − g2
/
x+

4,kx1,j

K3∏
j=1

x−
4,k − x3,j

x+
4,k − x3,j

K5∏
j=1

x−
4,k − x5,j

x+
4,k − x5,j

K7∏
j=1

1 − g2
/
x−

4,kx7,j

1 − g2
/
x+

4,kx7,j

,

1 =
K6∏ u5,k − u6,j + i

2

u5,k − u6,j − i
2

K4∏
j=1

x5,k − x+
4,j

x5,k − x−
4,j

,

1 =
K6∏

j=1,j =k

u6,k − u6,j − i

u6,k − u6,j + i

K5∏
j=1

u6,k − u5,j + i
2

u6,k − u5,j − i
2

K7∏
j=1

u6,k − u7,j + i
2

u6,k − u7,j − i
2

,

1 =
K6∏
j=1

u7,k − u6,j + i
2

u7,k − u6,j − i
2

K4∏
j=1

1 − g2/x7,kx
+
4,j

1 − g2/x7,kx
−
4,j

,

The scalar factor σ 2(u, v) occurring on the right-hand side of the fourth equation is the
so-called dressing factor and is closely related to S0(p1, p2) in (4.45)

S0 (u, v) = x−(u) − x+(v)

x+(u) − x−(v)

1 − g2

x+(u)x−(v)

1 − g2

x−(u)x+(v)

σ 2 (u, v) . (4.61)

In [42] its most general form was advocated to be

σ 2(u, v) = exp(2iθ(u, v)), (4.62)

where the phase θ(u, v) is given through

θ(uk, uj ) =
∞∑

r=2

∞∑
ν=0

βr,r+1+2ν(g)
(
qr(uk)qr+1+2ν(uj ) − qr(uj )qr+1+2ν(uk)

)
. (4.63)

In [7], based on the transcendental properties of the scaling function and homogeneity of its
power expansion in g, the explicit form of the coefficients βr,r+1+2ν(g) was proposed

βr,r+1+2ν(g) =
∞∑

μ=ν

g2r+2ν+2μβ
(r+ν+μ)

r,r+1+2ν, (4.64)

where

β
(r+ν+μ)

r,r+1+2ν = 0 for μ < r + ν − 1, (4.65)
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together with

β
(r+ν+μ)

r,r+1+2ν = 2(−1)r+ν+μ (r − 1)(r + 2ν)

2μ + 1

(
2μ + 1

μ − r − ν + 1

)(
2μ + 1

μ − ν

)
ζ(2μ + 1). (4.66)

It turns out that the dressing factor contributes at weak coupling starting from the four-loop
order only, see [43]–[45]. The excitation numbers, similarly to the one-loop case, are uniquely
determined through the labels of the state in question. The explicit relation for the all-loop
Dynkin diagram reads

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K1

K2

K3

K4

K5

K6

K7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 (L − B) − 1

2p − 1
4 (3q1 + q2)

1
2�0 − 1

2 (p + s1) − 1
4 (3q1 + q2)

�0 − 1
2 (L − B) − 1

2p − 1
4 (3q1 + q2)

�0 − p − 1
2 (q1 + q2)

�0 − 1
2 (L + B) − 1

2p − 1
4 (q1 + 3q2)

1
2�0 − 1

2 (p + s2) − 1
4 (q1 + 3q2)

1
2 (L + B) − 1

2p − 1
4 (q1 + 3q2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.67)

The expression for the anomalous dimension (4.51) is generalized as follows:

γ ABA = g2γ ABA
1 + g4γ ABA

2 + · · · = 2g2
K4∑
j=1

(
1

(x+(uj ))
− 1

(x−(uj ))

)
. (4.68)

As it was discussed in the preceding section, starting from the order O(g2L) one needs to
take the wrapping interactions into account and consequently equations (4.60) are generically
not reliable starting from this order. In some subsectors, as for example in the case of
the sl(2) subsector discussed in the following section, the wrapping corrections are delayed
by supersymmetry and the asymptotic Bethe equations (4.60) remain valid up to the order
O(g2L+2). In this paper all quantities that have been calculated with the help of the asymptotic
Bethe ansatz will be marked with the label ‘ABA’.

The higher conserved charges are given by

QABA
r =

K4∑
j=1

qABA
r (uj ) = 2g2

K4∑
j=1

(
1

(x+(uj ))r−1
− 1

(x−(uj ))r−1

)
. (4.69)

For symmetric root distribution all odd charges (4.69) vanish.
Physical solutions of the system (4.60), that is solutions that correspond to physical states

of the theory, must have different values of the rapidities at each nesting level

∀j = k : un,k = un,j n = 1, . . . , 7 (4.70)

since in the opposite case the corresponding wavefunction vanishes.

5. Analytical properties of twist operators

Twist operators have played a major role in performing tests of the AdS/CFT correspondence
since they are conjectured to be dual to the so-called spinning string on the AdS5 × S5, which
in some limit may be treated semiclassically. In this section we will review the analytic
properties of twist operators.
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5.1. The sl(2) subsector

The sl(2) subsector is a closed subsector, with operators being composed from scalar fields Z
and covariant derivatives D

Tr(DMZL) + · · · . (5.1)

The dots in (5.1) stand for all possible permutations of the derivatives over the Z fields with
suitable coefficients in front. The length of these operators is equal to the number of the Z
fields (see 4.1.2) and the covariant derivatives D should be interpreted as excitations on the
Tr(ZL) vacuum. The number of excitations is unbounded M = 0, 1, 2, . . . and may exceed
the length of the operator. This is due to the fact that the sl(2) representation is infinite
dimensional. The simplest operators in this sector are composed of two scalar fields and
arbitrary number of covariant derivatives

Tr(ZDMZ) + · · · . (5.2)

The weights of the sl(2) operators can be immediately read off from their field content
(5.1). The labels of the primary state must be, however, slightly shifted in order to comply
with the unitarity [34]

{�0, s1, s2, q1, p, q2, B,L} = {L + M − 1,M − 1,M − 1, 1, L − 2, 1, 0, L}. (5.3)

This corresponds to the action of some lowering operators J− in (4.18). A twist of an operator
is defined as

T = �0 − 1
2 (s1 + s2) . (5.4)

According to this definition the twist of these operator is equal to L.
The closure of the sl(2) subsector is also reflected in the compact form of the corresponding

Bethe equations. It follows from (5.3) together with (4.67) that the excitation numbers on the
all-loop diagram (figure 6) are given by

{K1,K2,K3,K4,K5,K6,K7} = {0, 0,M − 1,M,M − 1, 0, 0}. (5.5)

Since the third and the fifth equations can be written as

P(x3,k) = 0, P (x5,k) = 0, (5.6)

with

P(x) =
M∏

j=1

(
x − x+

4,j

) −
M∏

j=1

(x − x−
4,j ) = c

M−1∏
j=1

(x − x3,j ) = c

M−1∏
j=1

(x − x5,j ), (5.7)

one concludes that

x3,k = x5,k for k = 1, . . . , M − 1. (5.8)

Moreover, it follows from (5.7) that

P
(
x+

4,k

)
P
(
x−

4,k

) =
M∏

j=1,j =k

x+
4,k − x−

4,j

x−
4,k − x+

4,j

=
M∏

j=1

x+
4,k − x3,k

x−
4,k − x3,k

=
M∏

j=1

x+
4,k − x5,k

x−
4,k − x5,k

. (5.9)

This identity allows us to reduce the system of three equations to the equation for the main
roots u4,k, k = 1, . . . ,M only(

x+
k

x−
k

)L

=
M∏

j=1
j =k

x−
k − x+

j

x+
k − x−

j

1 − g2/x+
k x−

j

1 − g2/x−
k x+

j

exp(2iθ(uk, uj )). (5.10)
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On the solutions of this equation one needs to impose the momentum constraint

M∏
k=1

x+
k

x−
k

= 1. (5.11)

At the one-loop order equation (5.10) reduces to the Bethe equations of the non-compact
XXX− 1

2
spin chain

(
uk + i

2

uk − i
2

)L

=
M∏

j=1
j =k

uk − uj − i

uk − uj + i
. (5.12)

The non-compactness is due to the covariant derivatives, which can occur in arbitrary number
at each lattice site.

The Baxter equation, cf (3.75), corresponding to (5.12) takes the following form:(
u +

i

2

)L

Q(u + i) +
(
u − i

2

)L

Q(u − i) = t (u)Q(u), (5.13)

where t (u) = T (a)(u) is the eigenvalue of the auxiliary transfer matrix

t (u) = 2uL + qL−2u
L−2 + · · · + q0. (5.14)

The coefficient qL−1 is always zero and qL−2 corresponds to the eigenvalue of the Casimir
opertor

qL−2 = −J0(J0 + 1) − 1
4L, J0 = M + 1

2L. (5.15)

The remaining charges qr, r = 0, . . . , L − 3 constitute a complete set of quantum numbers
that describe uniquely any given state. Equation (5.13), after fixing the charges, is a difference
equation of the second order and thus has two algebraically independent solutions. One of the
solutions is, however, non-polynomial and we exclude it by the ansatz

Q(u) =
M∏

j=1

(u − uj ). (5.16)

Given a solution, the one-loop anomalous dimension (4.51) can be found from

γ ABA = 2g2

(
Q′
(

i

2

)
− Q′

(
− i

2

))
+ O(g4), (5.17)

as can be easily checked using (5.16).
A very interesting feature of twist operators is their scaling behaviour for large values of

the spin. This was first observed in [46] at the one-loop order and was confirmed to hold to all
orders in [47] and [7]. More precisely, the limit is defined through M → ∞, with L growing
slower than logarithmically with M. The anomalous dimension to the leading order is hence
given by

� − �0 = γ (g) = f (g) log M + · · · L → ∞, M → ∞ L � log M. (5.18)

The universal scaling function f (g) depends only on the coupling constant g and coincides,
at least up to three-loop order (see [47]), with the L = 2 scaling function. We will discuss this
limit in detail in section 7.
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5.2. Twist-two operators

In this section we will discuss a special case of L = 2, in which the anomalous dimension may
be found in a closed form as a function of M. We start by noting that in this case the transfer
matrix takes a particularly simple form

t (u) = 2u2 − (
M2 + M + 1

2

)
, (5.19)

and the difference equation (5.13)(
u +

i

2

)2

Q(u + i) +

(
u − i

2

)2

Q(u − i) =
(

2u2 −
(

M2 + M +
1

2

))
Q(u) (5.20)

is solved by the continuous Hahn polynomials

Q(u) = 3F2
(−M,M + 1, 1

2 − iu; 1, 1; 1
)
. (5.21)

The Bethe roots are simply zeros of this polynomial (see (5.16)). It is easily seen that for twist-
two operators M must take even values since the roots of (5.21) do not obey the momentum
constraint (4.49) for odd M.

Using the formula (5.17), one finds

γ ABA(M) = 8g2S1(M) + O(g4), (5.22)

where S1 is the harmonic sum

S1(M) =
M∑

j=1

1

j
. (5.23)

Formula (5.22) determines the anomalous dimension of twist-two operators as a function of
the spin M, a rare occurrence even at the one-loop level.

At higher loops it is also possible to reformulate the Bethe equations (5.10) in the form
of the Baxter equation, see [48]. This allows us to expand and subsequently solve the Baxter
equation order by order in perturbation theory, see [49]. In this paper, however, we will
not present these solutions, but rather concentrate on the corresponding expressions for the
anomalous dimension. Remarkably, one can guess them in a fairly simple manner using the
so-called transcendentality principle. This method was introduced in [50] and is based on
the previous observations made in [51]. It assumes that at each order of the perturbation
theory � the anomalous dimension is expressed through the generalized harmonic sums of the
order (2� − 1), or through the products of zeta functions and harmonic sums for which the
sum of the arguments of the zeta functions and the orders of the harmonic sums is equal to
(2� − 1). The generalized harmonic sums are defined by the following recursive procedure
(see [52]):

Sa(M) =
M∑

j=1

(sgn(a))j

ja
, Sa1,...,an

(M) =
M∑

j=1

(sgn(a1))
j

j a1
Sa2,...,an

(j). (5.24)

The order � of each sum Sa1,...,an
is given by the sum of the absolute values of its indices

� = |a1| + · · · |an|, (5.25)

and the order of a product of harmonic sums is equal to the sum of orders of its constituents.
The canonical basis of the harmonic sums of � th order is spanned by{
Sa11 , Sa21,a22 , . . . , Sa�1,a�2,...,a��

:

� = |a11| = |a21| + |a22| = · · · = |a�1| + |a22| + · · · + |a��|
}
, (5.26)
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where M dependence of the sums is implicit. Each � th order product of harmonic sums can
be decomposed in this basis.

We will discuss the aforementioned method of determining the higher order corrections to
the anomalous dimension of twist-two operators taking the two-loop order as an example. In
this case, according to the transcendentality principle, the order of the allowed harmonic sums
is three (the products of zeta functions and harmonic sums do not contribute at this order) and
thus the basis (5.26) takes the following form:

{S3, S−3, S2,1, S1,2, S−2,1, S1,−2, S2,−1, S−1,2, S−2,−1, S−1,−2,

S1,1,1, S−1,1,1, S1,−1,1, S1,1,−1, S−1,−1,1, S−1,1,−1, S1,−1,−1, S−1,−1,−1}. (5.27)

It was conjectured in [53] that the index −1 does not appear in the harmonic sums contributing
to the anomalous dimension. Although some Feynman diagrams may lead to harmonic sums
with index −1, their total sums should cancel. Moreover, each sum for which its first k indices
are equal to 1 scales in the limit M → ∞ as

S1,...,1,ak+1,...,an
(M) � # logk(M) for M � 1. (5.28)

One thus concludes that in view of the scaling properties of the anomalous dimension (5.18)
also S1,1,1 may not contribute to this order. The physical basis of the harmonic sums at the
two-loop order is consequently a small subset of (5.27)

{S3, S−3, S2,1, S1,2, S−2,1, S1,−2}. (5.29)

The two-loop γ ABA
4 anomalous dimension can be expanded in this basis

γ ABA
4 (M) = c1S3(M) + c2S−3(M) + c3S2,1(M) + c4S1,2(M) + c5S−2,1(M) + c6S1,−2(M)

(5.30)

with c1, . . . , c6 being coefficients one still needs to determine. However, it is possible to find
the two-loop correction to the anomalous dimension for the first few values of M from (5.10)
together with (4.68). This is further simplified due to the fact that the one-loop roots are
known, see (5.21). Expanding the roots to the two-loop order in (5.10)

uk = u
(0)
k + g2u

(1)
k + O(g4), (5.31)

one finds using (5.12) a linear system of equations for u
(1)
k , which can be easily solved with

the help of any algebra program (e.g. Mathematica). The coefficients c1, . . . , c6 may thus be
easily determined

γ ABA
4 (M)

16
= S3 + S−3 − 2(S1,2 + 2S2,1) − 2S1,−2. (5.32)

It is only a bit more involved to repeat this procedure for the three-loop correction, with the
result being

γ ABA
6 (M)

64
= 2S5 + 2S−5 − 4(S1,4 + S4,1) − 5(S2,3 + S3,2) + 4(S1,2,2 + S2,1,2 + S2,2,1)

+ 4(S3,1,1 + S1,3,1 + S1,1,3) − 4S−4,1 − 2S−3,−2 − S−3,2 − 2S−2,−3 − 8S1,−4

− 2S3,−2 − 9S2,−3 + 2S−2,−2,1 + 2S−2,1,−2 + 8S1,−3,1 + 2S1,−2,−2 + 2S1,−2,2

+ 12S1,1,−3 + 4S1,2,−2 + 6S2,−2,1 + 4S2,1,−2 − 8S1,1,−2,1. (5.33)

The both expressions (5.32) and (5.33) coincide with the field theory computations, see [53]
and [51]. The effectiveness of this method can be, however, appreciated starting from the
four-loop order, where the usual perturbative calculations become very involved. In [50]
the four-loop contribution to anomalous dimension was found. We reproduce this result in
table 1, where in the last row the contribution of the dressing phase was printed in boldface.
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Table 1. The result for
γ ABA

8
256 , see [50].

4S−7 + 6S7 + 2(S−3,1,3 + S−3,2,2 + S−3,3,1 + S−2,4,1) + 3(−S−2,5

+S−2,3,−2) + 4(S−2,1,4 − S−2,−2,−2,1 − S−2,1,2,−2 − S−2,2,1,−2 − S1,−2,1,3

−S1,−2,2,2 − S1,−2,3,1) + 5(−S−3,4 + S−2,−2,−3) + 6(−S5,−2

+S1,−2,4 − S−2,−2,1,−2 − S1,−2,−2,−2) + 7(−S−2,−5 + S−3,−2,−2

+S−2,−3,−2 + S−2,−2,3) + 8(S−4,1,2 + S−4,2,1 − S−5,−2 − S−4,3

−S−2,1,−2,−2 + S1,−2,1,1,−2) + 9S3,−2,−2 − 10S1,−2,2,−2 + 11S−3,2,−2

+12(−S−6,1 + S−2,2,−3 + S1,4,−2 +S4,−2,1 +S4,1,−2 −S−3,1,1,−2 −S−2,2,−2,1

−S1,1,2,3 −S1,1,3,−2 −S1,1,3,2 −S1,2,1,3 − S1,2,2,−2 − S1,2,2,2 − S1,2,3,1 − S1,3,1,−2

−S1,3,1,2 − S1,3,2,1 − S2,−2,1,2 − S2,−2,2,1 − S2,1,1,3 − S2,1,2,−2 − S2,1,2,2

−S2,1,3,1 − S2,2,1,−2 − S2,2,1,2 − S2,2,2,1 − S2,3,1,1 − S3,1,1,−2 − S3,1,1,2 − S3,1,2,1

−S3,2,1,1) + 13S2,−2,3 − 14S2,−2,1,−2 + 15(S2,3,−2 + S3,2,−2)

+16(S−4,1,−2 + S−2,1,−4 −S−2,−2,1,2 −S−2,−2,2,1 −S−2,1,−2,2 −S−2,1,1,−3

−S1,−3,1,2 −S1,−3,2,1 −S1,−2,−2,2 − S2,−2,−2,1 + S−2,1,1,−2,1 + S1,1,−2,1,−2

+S1,1,−2,1,2 + S1,1,−2,2,1) − 17S−5,2 + 18(−S4,−3 − S6,1 + S1,−3,3)

+20(−S1,−6 − S1,6 − S4,3 + S−5,1,1 + S−4,−2,1 + S−3,−2,2 + S−2,−4,1

+S−2,−3,2 + S1,3,3 + S3,1,3 + S3,3,1 − S1,1,−2,3 − S1,2,−2,−2 − S2,1,−2,−2)

−21S3,4 + 22(S1,−2,−4 + S2,2,3 + S2,3,2 + S3,−2,2 + S3,2,2) + 23(−S−3,−4

−S5,2 + S2,−2,−3) + 24(−S−4,−3 + S1,−4,−2 − S1,−3,1,−2 − S1,1,1,4 − S1,1,4,1

−S1,3,−2,1 − S1,4,1,1 − S3,−2,1,1 − S3,1,−2,1 − S4,1,1,1 + S−2,−2,1,1,1 + S−2,1,−2,1,1

+S1,−2,−2,1,1 + S1,−2,1,−2,1 + S1,1,−2,−2,1 + S1,1,1,−2,−2 + S1,1,2,−2,1 + S1,2,1,−2,1

+S2,1,1,−2,1) + 25S2,−3,−2 + 26(−S2,5 + S1,4,2 + S2,4,1 + S4,1,2 + S4,2,1)

+28(S1,2,4 + S2,1,4 − S−3,1,−2,1 − S−2,1,−3,1 − S1,−2,1,−3) + 30S−3,1,−3

+32(S1,5,1 + S5,1,1 − S−3,−2,1,1 − S−2,−3,1,1 − S1,−3,−2,1 − S1,−2,−3,1

−S2,2,−2,1 + S1,2,−2,1,1 + S2,1,−2,1,1 − S1,1,1,−2,1,1) + 36(S1,1,5 + S1,3,−3

+S3,1,−3 − S1,1,−3,−2 −S1,1,−2,−3 −S1,1,2,−3 −S1,2,−2,2 −S1,2,1,−3 −S2,1,−2,2

−S2,1,1,−3) +38S−3,−3,1 + 40(−S1,−4,1,1 − S2,−3,1,1 + S1,1,1,−2,2)

−41S3,−4 + 42(−S2,−5 + S1,−4,2 + S1,−3,−3) + 44(S1,−5,1 + S2,−3,2 + S3,−3,1)

+46S2,2,−3 + 48S1,1,−3,1,1 + 60(S1,1,−5 − S1,1,−3,2) + 62S2,−4,1 + 64S1,1,1,−3,1

+68(S1,2,−4 + S2,1,−4 − S1,2,−3,1 − S2,1,−3,1) − 72S1,1,1,−4 − 80S1,1,−4,1

−ζ(3)S1(S3 − S−3 + 2S−2,1).

In the following section, we will use this result in order to test the veracity of equations (5.10)
since one expects the wrapping interactions to contribute at this order.

One can also use the above procedure in order to determine the higher conserved charges.
It turns out that the �th loop correction to the 2rth charge Q2r

14 is composed of harmonic
sums of the (2� + 2r − 3)th order. Since harmonic sums of different orders are algebraically
independent, this confirms the algebraic independence of the higher charges and furnishes an
indirect proof of the asymptotic integrability.

5.3. The one-loop nonlinear integral equation

In this section we will introduce the concept of the holes which are dual excitations to the
magnons. With the help of the counting function we will rewrite the one-loop Bethe equations
for the sl(2) subsector in the form of a nonlinear integral equation. This new representation
allows us to understand the integrability from the ‘dual’ side and to investigate analytically
many limiting cases.

14 All odd charges vanish due to the u → −u symmetry of the root distribution.

35



J. Phys. A: Math. Theor. 42 (2009) 254002 A Rej

5.3.1. Magnons and holes. Using the ansatz (5.16) the left-hand side of the Baxter
equation (5.13) becomes a polynomial of the (L+M) th order and according to the fundamental
theorem of algebra it must posses (L + M) roots. Putting

u = uk k = 1, 2, . . . ,M, (5.34)

the right-hand side of (5.13) vanishes and one obtains the Bethe equations (5.12). The
remaining L solutions are roots of the transfer matrix eigenvalue t (u)

t (u) = 2
L∏

k=1

(
u − u

(k)
h

)
. (5.35)

These additional roots will be called holes in what follows. For u = u
(k)
k the Baxter

equation (5.13) gives(
u

(k)
h + i

2

u
(k)
h − i

2

)L

=
M∏

j=1
j =k

u
(k)
h − uj − i

u
(k)
h − uj + i

k = 1, 2, . . . , L. (5.36)

The right-hand side of this equation contains the product over the usual Bethe roots and
consequently the hole roots may be found only after the Bethe roots are determined. This is
related to the fact that the charges qj , discussed in the previous section, may be expressed
through the Bethe roots uk , as can be seen from (5.13) together with (5.16). By comparing
(5.14) and (5.35) one concludes that

L∑
j=1

u
(j)

h = 0, (5.37)

which corresponds to the momentum constraint (4.49) for the holes. Intuitively, one can
consider the hole roots as rapidities of the Z fields. We will discuss this point below.

In what follows we will confine ourselves to the ground states (states with the lowest
anomalous dimension in the sector) and to even values of the Lorentz spin M, in which case
both the magnon roots and the hole roots are real and symmetrically distributed around the
origin. We will further assume that L � M . The charges qk in (5.14) depend in general on
M, however for the assumed values of parameters it was shown in [46] that the second charge
q2 is strongly dominating. This implies that two hole roots are much bigger than the other

u
(1)
h = −u

(2)
h �

√
q2

2
≈ M√

2
. (5.38)

In order to derive an integral equation we rewrite the one-loop equations in the logarithmic
form

2L arctan (2uk) = 2πnk − 2

M−1
2∑

j=− M−1
2

arctan(uk − uj ), (5.39)

where we have chosen Arctan branch of the logarithms and grouped the roots as follows:

u−k = −uk k = 1

2
,

3

2
, . . . ,

M − 1

2
. (5.40)

In [47] it was conjectured that the mode numbers nk of the ground states are given by

nk = k +
L − 2

2
sgn(k) for k = ±1

2
± 3

2
, . . . ,±M − 1

2
. (5.41)
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The value of the roots grow monotonically with nk . The mode numbers of the hole roots, as
we will show below using the counting function, can be splitted into two groups. The two
universal holes have large mode numbers

n
u,1
h = L + M − 1

2
n

u,2
h = −L + M − 1

2
. (5.42)

The rest of the hole roots fills the gap around zero, opened by the distribution of the magnon
roots

nr
h ∈

{
−L − 3

2
, . . . ,

L − 3

2

}
. (5.43)

Hence the following inequality between magnon and hole roots is satisfied∣∣u(1,2)
h

∣∣ > |uk| > u
(j)

h (j = 1, 2). (5.44)

5.3.2. The counting function and the nonlinear integral equation. A particularly suitable
quantity to describe simultaneously magnons and holes is the scaling function, see [54]. In
the case of the sl(2) operators it is convenient to adopt the following definition (see [55]):

Z(u) = Lφ

(
u,

1

2

)
+

M−1
2∑

k=− M−1
2

φ(u − uk, 1), where φ(u, ξ) = i log

(
iξ + u

iξ − u

)
. (5.45)

The origin of its name is due to the relation

Z(±∞) = ±π(L + M) (5.46)

in conjunction with

Z(uj ) = π(2nj + δ − 1) j = ±1

2
, . . . ,±M − 1

2
(5.47)

Z
(
u

(k)
h

) = π
(
2n

(k)
h + δ − 1

)
k = 1, . . . , L, (5.48)

as can be easily confirmed using (5.45) and (5.12). Here, we have introduced

δ = L mod 2. (5.49)

Therefore Z(u) is a continuous function which, whenever u is equal to the magnon or the hole
root, returns the corresponding mode number. With the help of the counting function it is
straightforward to determine the expression for the mode numbers of the holes. Directly from
(5.41) together with (5.46)–(5.48) one confirms the validity of (5.42) and (5.43).

The derivation of the nonlinear integral equation is based on the following fundamental
identity (see [54] and references therein):

M∑
k=1

f (uk) +
L∑

j=1

f
(
u

(j)

h

) = −
∫ ∞

−∞

du

2π
f ′(u)Z(u) +

∫ ∞

−∞

du

π
f ′(u)Im log[1 + (−1)δ eiZ(u+i0)],

(5.50)

which can be proven by contour integration methods. Applying this identity to the sum in
(5.45) one finds after performing Fourier transformation [55] the integral equation for the
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scaling function15

Z(u) = iL log
� (1/2 + iu)

� (1/2 − iu)
+

L∑
j=1

i log
�
( − i

(
u − u

(j)

h

))
�
(
i
(
u − u

(j)

h

))
+ lim

α→∞

∫ α

−α

dv

π
i

d

du
log

�(−i(u − v))

�(i(u − v))
Im log[1 + (−1)δ eiZ(v+i0)]. (5.52)

The nonlinear term must be regularized due to the asymptotic behaviour of the integrand. It
should be stressed that the nonlinear term may not be integrated by parts, else the equation
would become linear what contradicts the nonlinearity of the Bethe equations. The reason
for this is discontinuities of the term Im log[1 + (−1)δ eiZ(v+i0)], which need to be taken into
account while integrating.

The identity (5.50) allows us to express all higher charges (4.69) through the counting
function Z(u)

Qp = −
∫

du

2π
q ′

p(u)Z(u) −
L∑

j=1

qp

(
u

(j)

h

)
+
∫

dv

π
q ′

p(v)Im log[1 + (−1)δ eiZ(v+i0)]. (5.53)

Here, qp(u), p = 1, 2, . . . denote the corresponding charge densities. The first charge also
needs to be regularized

P = lim
α→∞

⎛
⎝−

∫ α

−α

du

2π
p′(u)Z(u) −

L∑
j=1

p
(
u

(j)

h

)
+
∫ α

−α

du

π
p′(u)Im log[1 + (−1)δ eiZ(u+i0)]

⎞
⎠ ,

(5.54)

with p(u) ≡ q1(u) being the momentum density of a magnon

p(u) = 1

i
log

u + i/2

u − i/2
. (5.55)

Using the antisymmetry of Z(u) and p(u) one finds the usual momentum constraint (4.49)

P = 0. (5.56)

In a similar manner, the one-loop anomalous dimension γ ABA
2 is given by

γ ABA
2 = 4γEL + 2

L∑
j=1

{
ψ
(
1/2 + iu(j)

h

)
+ ψ

(
1/2 − iu(j)

h

)}

+ 2
∫ ∞

−∞

dv

π
i

d2

dv2

(
log

�(1/2 + iv)

�(1/2 − iv)

)
Im log[1 + (−1)δ eiZ(v+i0)], (5.57)

where γE denotes the Euler–Mascheroni constant.
Equation (5.52) together with the equation for the holes (5.48) and the mode numbers

(5.42) and (5.43) are completely equivalent to the Bethe equations (5.12) for the ground
states16.

15 Due to superficial divergencies, it is more transparent to apply (5.50) to the second derivative of the corresponding
sum subsequently integrating twice. The integration constants are fixed by antisymmetry of Z(u) and

lim
u→∞ Z′(u) = 0. (5.51)

16 The generalization to all operators in the sector is fairly simple, though we will not consider it in this paper.
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As it was shown in [55], the last term in (5.52), which we will call Imlog-term in what
follows, at large values of M and for u � M can be approximated through

lim
α→∞

∫ α

−α

dv

π
i

d

du
log

�(−i(u − v))

�(i(u − v))
Im log[1 + (−1)δ eiZ(v+i0)] � 2 log 2u. (5.58)

Therefore the equation for the ‘small’ holes (5.48) u
(j)

h , j = 3, 4, . . . , L takes the following
explicit form:

2−2iu(k)
h

⎛
⎝ �

(
1
2 + iu(k)

h

)
�
(

1
2 − iu(k)

h

)
⎞
⎠

L

=
L∏

j=1,j =k

�(i(uk − uj ))

�(−i(uk − uj ))
. (5.59)

The product on the right-hand side runs over all hole roots, while the equation itself is valid
for k = 3, 4, . . . , L. This equation was first derived with the help of the Baxter equation in
[46], where also its solutions have been studied in detail. In particular, it was shown that the
small hole roots u

(j)

h (j = 3, 4, . . . , L) scale like

max
{
u

(3)
h , u

(4)
h , . . . , u

(L)
h

} ∼ c̃
L

log M
+ O

(
L2

log2 M

)
(5.60)

when M � 1.
All physical quantities can be expressed through hole rapidities and therefore holes can

be considered as dual excitations of the spin chain. Since the number of holes is equal to the
number of Z fields, this suggests to identify them with the Z fields. In the dual description
the Z fields scatter on the (unphysical) Tr(DM) vacuum. Thereby two of the holes move very
fast and scatter with itself and the remaining slow holes u

(j)

h , j = 3, 4, . . . , L. It is instructive
to note that for the twist-two operators there are no slow holes and the scattering of the fast
holes can be seen as the two-body problem. This clarifies the exact solvability in this case.

5.3.3. The thermodynamic limit. In the case of compact spin chains one usually defines
the thermodynamic limit by taking the length of the spin chain to be infinite. Non-compact
spin chains offer, in addition, the possibility to take the number of excitations very large, as
compared to the length. In the context of the AdS/CFT correspondence this is often much
more interesting than the usual thermodynamic limit. In this section we will assume L → ∞
and M → ∞ such that

L � M. (5.61)

For these values of L and M the mode numbers are explicitly known, see (5.41).
It was conjectured in [56] that in this limit the magnon roots densely cover the interval

(−∞,−a)∪ (a,∞).17 Therefore it is appropriate to introduce the density of roots. We define
it through

ρ0(u) = 1

M

M−1
2∑

j=− M−1
2

δ(u − uj ), (5.62)

from which the normalization condition follows(∫ −a

−∞
+
∫ ∞

a

)
dv ρ0(v) = 1. (5.63)

17 Accordingly, one may show using the properties of orthogonal polynomials that the roots of (5.21) condense on
the whole real axis when M → ∞.
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Each sum over the Bethe roots can be expressed through the density as follows:
M−1

2∑
j=− M−1

2

f (uj ) = M

(∫ −a

−u(M)

+
∫ u(M)

a

)
dv ρ0(v)f (v), (5.64)

where u(M) denotes the boundary of the magnon distribution

lim
M→∞

u(M) = ∞. (5.65)

Some expressions, as we will see below, need to be regularized with u(M).
The mode numbers (5.41) can also be obtained from the function18

n(u) = −M

2
+

M−1
2∑

j=− M−1
2

θ
(
u − uj

)
+

L − 2

2
sgn(u), n(uk) = nk. (5.66)

One then notes the following relation between n(u) and the density:

ρ0(u) = 1

M

d

du

(
n(u) − L − 2

2
sgn(u)

)
. (5.67)

Thus in the limit M → ∞,cf (5.47),

1

M

d

du
Z(u) = 2πρ0(u) + 2π

(L − 2)

M
δ(u). (5.68)

Upon differentiating (5.45), one obtains with the help of (5.64) and (5.68) an integral equation
for the density

2πρ0(u) + 2π
L − 2

M
δ(u) − L

M

1

u2 + 1
4

− 2

(∫ −a

−u(M)

dv +
∫ u(M)

a

dv

)
ρ0(v)

(u − v)2 + 1
= 0.

(5.69)

This equation must be supplemented with the normalization condition (5.63). We will discuss
equation (5.69) in detail in section 7.

It follows from (5.60) that in the limit (5.18) three cases should be distinguished. In the
first one L is kept fixed or goes to infinity slower than logarithmically with respect to M. Then
a = 0. In the second case L = j log M and according to (5.60) the boundary parameter a is
constant a = a(j). The last case applies to L diverging faster than logarithmically, when a is
non-constant anymore and grows with M. We will not discuss the last case in this paper.

5.4. The nonlinear integral equation at higher orders

In this section we will generalize the nonlinear integral equation to higher orders of the
perturbation theory.

Similarly to the one-loop case the counting function is defined as the logarithm of the
corresponding Bethe equations (5.10)

Z(u) = iL log
x(i/2 + u)

x(i/2 − u)
+ i

M∑
k=1

log
i + u − uk

i − (u − uk)

− 2i
M∑

k=1

log
1 + g2

x(i/2+u)x(i/2−uk)

1 + g2

x(i/2−u)x(i/2+uk)

+ 2
M∑

k=1

θ(u, uk). (5.70)

18 This continuation is, contrary to the counting function, not smooth for finite M.
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With the help of (5.50) one obtains the desired result

Z(u) = iL log
x(i/2 + u)

x(i/2 − u)
+
∫ ∞

−∞

dv

2π
φ′(u − v, 1)Z(v)

−
L∑

j=1

φ
(
u − u

(j)

h , 1
) −

∫ ∞

−∞

dv

π
φ′(u − v, 1)Im log[1 + (−1)δ eiZ(v+i0)]

+
∫ ∞

−∞

dv

2π

⎛
⎝2i

d

dv
log

1 + g2

x(i/2+u)x(i/2−v)

1 + g2

x(i/2−u)x(i/2+v)

− θ(u, v)

⎞
⎠Z(v)

+
L∑

j=1

⎛
⎝2i log

1 + g2

x(i/2+u)x(i/2−u
(j)

h )

1 + g2

x(i/2−u)x(i/2+u
(j)

h )

− θ
(
u, u

(j)

h

)⎞⎠

−
∫ ∞

−∞

dv

π

⎛
⎝2i

d

dv
log

1 + g2

x(i/2+u)x(i/2−v)

1 + g2

x(i/2−u)x(i/2+v)

− θ(u, v)

⎞
⎠

× Im log[1 + (−1)δ eiZ(v+i0)]. (5.71)

Contrary to the previous case (5.52), linear terms in Z occur on the right-hand side of this
equation. This is due to the fact that the integral kernels are not of a difference form anymore
and cannot be diagonalized simultaneously with the Fourier transform.

The mode numbers are not influenced by quantum corrections as long as the coupling
constant is small, and thus the relations (5.48) remain valid beyond the one-loop level.
Equation (5.71) together with (5.48) is fully equivalent to the asymptotic Bethe
equations (5.10) for the ground states.

The all-loop counting function (5.70) exhibits similar properties to its one-loop
counterpart. In particular

1

M

d

du
Z(u) = 2πρ(u) + 2π

(L − 2)

M
δ(u), (5.72)

with ρ(u) being the all-loop density.
Equation (5.71) can be further simplified by performing a Fourier transformation.

Defining

F̂ (t) =
∫ ∞

−∞
du e−ituF (u), (5.73)

one finds after partial diagonalization

Ẑ(t) = 2πL e
t
2

it (et − 1)
J0(2gt) −

L∑
j=1

2π cos
(
tu

(j)

h

)
it (et − 1)

− 2

et − 1
L̂(t)

+ 8g2 e
t
2

et − 1

∫ ∞

0
dt ′ e− t ′

2 K̂(2gt, 2gt ′)
(

t ′L̂(t ′) +
π

i

L∑
j=1

cos
(
t ′u(j)

h

))

− 4g2 e
t
2

et − 1

∫ ∞

0
dt ′ e− t ′

2 t ′K̂(2gt, 2gt ′)Ẑ(t ′), (5.74)

where L̂(t) is the Fourier transform of

L(u) = Im log[1 + (−1)δ eiZ(u+i0)]. (5.75)
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The kernel K̂(t, t ′) is defined through (see [7])

K̂(t, t ′) = K̂0(t, t
′) + K̂1(t, t

′) + K̂d(t, t
′), (5.76)

with

K̂0(t, t
′) = tJ1(t)J0(t

′) − t ′J0(t)J1(t
′)

t2 − t ′2
, (5.77)

and

K̂1(t, t
′) = t ′J1(t)J0(t

′) − tJ0(t)J1(t
′)

t2 − t ′2
. (5.78)

The dressing kernel K̂d(t, t
′) corresponds to the dressing phase (4.63) and is a convolution of

the both previous kernels

K̂d(t, t
′) = 8g2

∫ ∞

0
dt ′′K̂1(t, 2gt ′′)

t ′′

et ′′ − 1
K̂0(2gt ′′, t ′). (5.79)

The asymptotic conserved charges can be expressed through the counting function in a similar
manner to the one-loop case

QABA
p = −

∫
dv

2π
qABA

p
′(v)Z(v) −

L∑
j=1

qABA
p

(
u

(j)

h

)
+
∫

dv

π
qABA

p
′(v)Im log[1 + (−1)δ eiZ(v+i0)],

(5.80)

where qp(u) is the all-loop charge density (4.69).
According to equation (5.74) the function Ẑ(t) exhibits a first-order pole at t = 0. The

reason for this is the asymptotic properties of the counting function (5.70), which is Fourier
transformable only in the principle value sense, similarly to arctan(u). Equation (5.74) is
particularly suitable to investigate different limits in L and M.

6. Dynamical tests of the asymptotic Bethe ansatz

In this section we will carry out dynamical tests of the asymptotic Bethe equations of the sl(2)

subsector. For this purpose we will apply the BFKL equation originating from the high energy
QCD. This equation, which was derived by analysing leading contributions to the hadronic
scattering amplitudes, predicts the pole structure of the anomalous dimension of twist-two
operators. With the help of the four-loop result presented in the previous section we will
demonstrate that the asymptotic Bethe ansatz is invalid at the wrapping order. This supports
the hypothesis that if the system remains integrable the wrapping interactions must modify
the structure of equations (4.60).

6.1. The BFKL equation and the double logarithmic constraints

An important problem in the theory of hadrons is to determine the behaviour of the scattering
amplitudes in the so-called Regge limit, when the invariant mass s is much bigger than t

s � −t ∼ M2, (6.1)

where M denotes the mass scale of hadrons. Regge discovered that in this limit the high-
energy scattering in quantum mechanics is governed by singularities in angular momentum
of the partial waves. Later on, this phenomenon was understood to apply to quantum field
theories as well and in particular to the scattering theory of hadrons. Let A(s, t) be a scattering
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amplitude. The decomposition into partial waves can be performed with the help of the Mellin
transformation (see [57] and [58] for pedagogical reviews)

A(s, t) = is
∫ δ+i∞

δ−i∞

dω

2π i

( s

M2

)ω

Ā(ω, t). (6.2)

Every pole ω0 of the partial wave Ā(ω, t) contributes to the amplitude A(s, t) the term

f (t)sω0, (6.3)

where f (t) is a function of t only. Therefore, knowing all the poles one can reproduce the
asymptotic behaviour of the scattering amplitude. The nearest (dominating) pole is often
called the Pomeranchuk pole.

In the limit (6.1) it was shown, see [58] and references therein, that any 2 → 2 scattering
in the Regge limit (6.1) can be represented in the following form:

A(s, t) = i
∞∑

m=0

αs((α log s)mfm,m(t) + α(α log s)m−1fm,m−1(t) + · · · + αmfm,0(t)) + O(s0),

(6.4)

where α denotes the coupling constant. The analytic structure in the s plane is related to
the convergence properties of this series and can be determined only after resummation.
Generally, for the QCD or the N = 4 SYM, the function fm,n(t) cannot be found explicitly
and one is forced to make certain approximations. To the leading order one may neglect all
coefficients except for fm,m. This is the so-called leading logarithmic approximation (LLA).
In next-to-leading logarithmic approximation (NNLA) one takes additionally fm,m−1 into
account, etc. It turns out that in the LLA approximation the hadronic scattering amplitudes
are dominated by interacting gluons propagating in the t channel. These gluons due to their
mutual interactions form collective excitations (see [59–62]), the so-called reggeons. To each
reggeon corresponds a sum of infinitely many Feynman diagramms. The scattering of two such
excitations is equivalent to taking the LLA appoximation and more generally one can refine the
approximation scheme by taking further reggeons into account. It was found in [59–62] that
the gluon–gluon partial waves obey an integral equation (the so-called LO BFKL equation),
which upon iteration describes the contribution to the scattering amplitude coming from a pair
of regeeized gluons. Subsequently, the complete basis of the homogeneous BFKL equation
was deterimined [63], which allowed to derive a functional equation for the eigenvalues. Due
to the fact that solely gluons determine the leading behaviour of the scattering amplitudes, a
similar equation may be found in other gauge theories.

Although N = 4 SYM theory does not have hadrons in its spectrum, it is still possible to
formulate mathematically the BFKL equation, see [53]. Roughly speaking, the pomeron of
the N = 4 gauge theory is described by the non-local gauge-invariant operator

pomeron = Tr
(
ZD−1+ωZ

)
, (6.5)

where the parameter ω is assumed to be small. It can be shown, see [53], that the anomalous
dimension of this operator (for ω → 0) in the LLA approximation can be found through the
LO BFKL equation

ω

−4g2
= �

(
−γ

2

)
+ �

(
1 +

γ

2

)
− 2� (1) , (6.6)

where �(x) is the psi function. Due to the resummation of infinitely many Feynman diagrams,
the BFKL equation determines non-perturbatively the leading singularities. The perturbative
solution can be obtained by expanding in γ

ω

−4g2
= 2

γ
− 2

∞∑
k=1

(γ

2

)2k

ζ(2k + 1), (6.7)
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and subsequently substituting the perturbative expansion of the anomalous dimension

γ (g) = g2γ2 + g4γ4 + g6γ6 + · · · . (6.8)

To the first few orders one finds the following perturbative expansion around ω = 0 :

γ = 2

(−4g2

ω

)
− 0

(−4g2

ω

)2

+ 0

(−4g2

ω

)3

− 4ζ(3)

(−4g2

ω

)4

± · · · . (6.9)

It should be noted that the LO BFKL equation predicts the order and the residue of the leading
pole at each order of the perturbation theory. In order to find the sub-leading poles one would
need to go beyond the leading approximation scheme.

The quantum numbers of (6.5) can be formally obtained through analytic continuation in
M of the corresponding quantum numbers of twist-two operators

{2, 3, . . .} � M → M = −1 + ω. (6.10)

In this sense one can also interpret the state (6.5). This is supported by the well-defined
analytical properties of the anomalous dimension and higher conserved charges of twist-two
operators for which closed formulae in M are known. Harmonic sums occurring in these
expressions, as shown in [64], may be continued analytically to the whole complex plain. For
example, the one-loop contribution (5.22) can be expressed through the psi function �(x)

γ2 = 8S1(M) = 8 (�(M + 1) − �(1)) , (6.11)

which is defined for M ∈ C. It was shown in [64] that all nested harmonic sums (5.24) can be
consistently continued to complex values of M through psi functions and higher transcendental
functions. After analytic continuation, every harmonic sum of the order � exhibits poles at
negative integer values of M and the order of the highest pole is always smaller or equal to �.
In particular, the anomalous dimension of twist-two operators is singular for M = −1. This
allows us to confront the order and the residue of the highest pole with the prediction coming
from the BFKL equation. We will use this opportunity in order to verify the veracity of the
four-loop result, as derived in section 5.2 from the asymptotic Bethe equations (5.10).

Apart from the BFKL equation, which predicts the structure of the poles at M = −1,
there also exist constraints following from the double logarithmic behaviour of the scattering
amplitudes, which enable to predict the leading singularities at negative even vaues of M.
Scattering amplitudes in this limit were studied for QED and QCD in [65–67]. According
to the hypothesis formulated in [53, 68], despite the fact that they originate from the double
logarithmic behaviour, the singularities at M = j − 2 = −r (r = 2, 3, . . .) may be predicted
from the generalized BFKL equation

ω

−4g2
= �

(
−γ

2

)
+ �

(
1 +

γ

2
+ |n|

)
− 2� (1) . (6.12)

This equation generalizes (6.7) to the case of higher twist operators due to the relation
|n| = T − 2. It should be stressed, however, that these higher twist operators are not
embedded in the sl(2) sector and they still have not been fully identified in the N = 4 SYM
theory.

Allowing for |n| to become negative |n| = −r + 1, r = 2, 4, . . . such that

ω = M + r → 0 and |n| + r − 1 = C1(r)ω
2 + O(ω3), (6.13)

one can, after, as explained in [53, 68], replacing the argument of the second psi function by

1 +
γ

2
+ |n| �→ 1 +

γ

2
+ |n| + ω, (6.14)

derive the following relation from (6.12):

γ (2ω + γ ) = −16g2. (6.15)
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Physically, this corresponds to taking the double logarithmic contributions to scattering
amplitudes ∼ (αln2s)ns−r+2 into account.

Equation (6.15) is a polynomial equation of the second order. One of the solutions is
unphysical since the anomalous dimension must vanish when g → 0 and thus

γ = −ω + ω

√
1 − 16g2

ω2

= 2
(−4g2)

ω
− 2

(−4g2)2

ω3
+ 4

(−4g2)3

ω5
− 10

(−4g2)4

ω7
− · · · . (6.16)

6.2. Dynamical test of the asymptotic Bethe equations

The predictions (6.9) and (6.16) can be compared with the analytic continuations of the one-,
two- and three-loop corrections (5.22), (5.32) and (5.33) and most importantly with the analytic
continuation of the four-loop result. For M = −1 + ω one finds

γ ABA = 2

(−4g2

ω

)
− 0

(−4g2

ω

)2

+ 0

(−4g2

ω

)3

− 2
(−4g2)4

ω7
± · · · . (6.17)

Around the negative even values M = −2 + ω,−4 + ω, . . . one derives

γ ABA = 2
(−4g2)

ω
− 2

(−4g2)2

ω3
+ 4

(−4g2)3

ω5
− 10

(−4g2)4

ω7
− · · · . (6.18)

One thus infers that the one-, two- and three-loop leading singularities, as derived from
the asymptotic sl(2) Bethe equations (5.10), coincide with the LO BFKL and the double
logarithmic predictions. On the other hand, the four-loop correction violates strongly the pole
structure predicted by the BFKL equation. After analytic continuation some of the harmonic
sums of the seventh order exhibit poles at M = −1 of the order higher than four. According to
the BFKL equation, however, these poles should cancel each other. This contradiction proves
unambiguously that the four-loop result is incorrect and consequently that the asymptotic
Bethe ansatz (5.10) must fail for twist-two operators at four-loop order. Moreover, this also
confirms that the wrapping interactions must be taken into account at this order.

It turns out that this maximal breaking of the BFKL prediction can be easily traced back
in table 1 since after analytic continuation only the first two sums exhibit poles of seventh
order

S7(−r + ω) = − 1

ω7
+ O

(
1

ω6

)
, S−7(−r + ω) = − (−1)r

ω7
+ O

(
1

ω6

)
, (6.19)

with r = −1,−2, . . . . The expansion (6.9) necessitate that coefficients in front of the both
sums should be equal, while consistency with (6.16) fixes these coefficients to 5. On the other
hand, the coefficients following from the ABA are 4 and 6, respectively (see table 1).

6.3. The NLO BFKL equation and the generalized double logarithmic constraints

In this subsection we will briefly discuss refinements of the BFKL and the double logarithmic
predictions. These provide additional constraints on the form of the perturbative anomalous
dimension of twist-two operators and may therefore be used in order to check the validity of
any yet-to-be-found system of spectral equations of the N = 4 gauge theory.

The leading order BFKL equation discussed in subsection 6.1 has recently been
generalized by including sub-leading effects in the Regge kinematics. This was first calculated
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for the QCD in [69] and later the N = 4 part of the QCD answer was extracted in [53, 68].
Using the dimensional reduction scheme the NLO BFKL equation may be written as

ω

−4g2
= χ(γ ) − g2δ(γ ), (6.20)

where

χ(γ ) = �
(
−γ

2

)
+ �

(
1 +

γ

2

)
− 2� (1) , (6.21)

δ(γ ) = 4χ ′′(γ ) + 6ζ(3) + 2ζ(2)χ(γ ) + 4χ(γ )χ ′(γ ) − π3

sin πγ

2

− 4�
(
−γ

2

)
− 4�

(
1 +

γ

2

)
.

(6.22)

The function �(γ ) is given by the following expression:

�(γ ) =
∞∑

k=0

(−1)k

(k + γ )2
[� (k + γ + 1) − �(1)]. (6.23)

The perturbative pole structure of the anomalous dimension may be found similarly as
in the previous subsection. Since the NLO BFKL equation contains information about the
next-to-leading effects, it predicts the residue of the next-to-leading pole at each order of
perturbation theory. Thus, expression (6.9) is refined to

γ = (2 + 0ω)

(−4g2

ω

)
− (0 + 0ω)

(−4g2

ω

)2

+ (0 + ζ(3)ω)

(−4g2

ω

)3

−
(

4ζ(3) +
5

4
ζ(4)ω

)(−4g2

ω

)4

± · · · . (6.24)

This expansion is reproduced through the one-, two- and three-loop results (5.22), (5.32) and
(5.33). At the four-loop order one obtains from (6.24) all together four constraints. The first
three leading poles must be absent (though, exceptionally, the vanishing of the seventh-order
pole implies the vanishing of the pole of the sixth-order) and the residues of two further poles
must coincide with (6.24).

In the publication [70] a conjecture has been put forward, according to which the inclusion
of the NLO and the NNLO corrections to the double logarithmic scaling amounts to modifying
equation (6.15) in the following way:

γ (2ω + γ ) = −16g2(1 − S1ω − (S2 + ζ2)ω
2) − 64g4

(
S2 + ζ2 − S2

1

) − 4g2(S2 + S−2)γ
2.

(6.25)

Harmonic sums in this formula are all functions of (r − 1). It is straightforward to find the
corresponding perturbative pole structure

γ = 2
∞∑

�=1

c�(ω)(−4g2)�, (6.26)

with the coefficients ci given by

c1(ω) = 1

ω
− S1 − ω(ζ2 + S2) + · · · ,

c2(ω) = − 1

ω3
+

2S1

ω2
+

ζ2 + S2

ω
+ · · · ,

(6.27)

c3(ω) = 2

ω5
− 6S1

ω4
+

−4(ζ2 + S2) + 4S2
1 + (S2 + S−2)

ω3
+ · · · ,

c4(ω) = − 5

ω7
+

20S1

ω6
+

14(ζ2 + S2) − 24S2
1 − 4(S2 + S−2)

ω5
+ · · · .
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It should be stressed that expression (6.26) together with (6.27) determines residues of the
poles at each negative even value of M = −2,−4, . . . , thus allowing us to compare the
residue functions and not single numbers only.

Yet another possibility of testing the validity of the spectral equations offer the reciprocity
relations [71, 72], see also [73], which explain some curious hidden symmetry of the
perturbative corrections to the anomalous dimension of twist-two operators. Surprisingly, the
same relations may be found from the string theory side [74] suggesting their non-perturbative
validity.

Very recently the wrapping correction to the four-loop result, cf table 1, was derived in [75]
by evaluating the first finite size corrections to the string sigma model on the AdS5 ×S5 at weak
coupling. This novel procedure was shown to reproduce correctly the four-loop anomalous
dimension of the Konishi operator, calculated in [76, 77] with the usual perturbative methods,
and the corrected anomalous dimension of twist-two operators has passed positively all tests
discussed in this section!

7. Dynamical test of the planar AdS/CFT correspondence

In this section we will discuss observables of the both sides of the correspondence that can
be defined non-perturbatively and by means of interpolation allow us to test the AdS/CFT
correspondence.

7.1. Interpolating functions

The difficulty in proving the AdS/CFT correspondence is mainly caused by the fact that the
non-perturbative quantization of the N = 4 SYM theory and the string theory on AdS5 × S5

space is currently not understood. Luckily, in special limits we will discuss, one can use
the asymptotic Bethe equations to define non-perturbatively gauge theory observables, which
can be then continued to the results of the string theory obtained from the semiclassical
quantization.

One of the simplest dynamical tests of the AdS/CFT correspondence can be performed
with the help of the 1

2 -BPS operators, like Tr(ZL), see section 4.1.2. These operators are
primary fields with respect to the superconformal algebra and are annihilated additionally by
a half of the supersymmetry generators Q. It is thus straightforward to derive from (4.12) and
(4.13) the all-loop relation

�(g) = p = L. (7.1)

Since the Cartan labels of the su(4) symmetry algebra do not receive quantum corrections,
it follows from (7.1) that the scaling dimension is protected and non-perturbatively equal to
its classical counterpart. On the other hand, the string theory on the AdS5 × S5 space has
massless excitations which should be identified with the aforementioned BPS operators. Such
an identification was done in [78], confirming the validity of the correspondence in this simple
case.

The asymptotic integrability discussed in section 4 is the first step to the non-perturbative
definition of the N = 4 gauge theory. With the help of the asymptotic Bethe equations (4.60)
it is possible to calculate perturbatively anomalous dimensions of the operators only up to the
order O(g2L). However, for L → ∞ one should be able to reproduce the full perturbative
expansion, which could be then continued beyond its convergence radius. Below we will
discuss this possibility and argue that the results can be compared with the predictions of
string theory.
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A particularly suitable subsector for this purpose is again the sl(2) subsector. As already
mentioned in (5.18), states of this subsector with the minimal anomalous dimension scale for
M → ∞ as19

� − �0 = γ (g) = f (L)(g) log M + · · · . (7.2)

The universal scaling function20 f (g) is defined in the limit L → ∞, L � log M , and thus
in the region of validity of the asymptotic Bethe equations. This scaling function was defined
at the one-loop order in [46] and subsequently investigated at higher loops in [47] and [7] by
means of the asymptotic Bethe equations (5.10). It turns out that the logarithmic behaviour
(7.2) is reproduced by the leading magnon fluctuation density and that this density can be
determined from an integral equation, the BES equation, allowing to find the perturbative
expansion of the scaling function to arbitrary order

fABA(g) = 8g2 − 8

3
π2g4 +

88

45
π4g6 − 16

(
73

630
π6 + 4ζ(3)2

)
g8

+ 32

(
887

14175
π8 +

4

3
π2ζ(3)2 + 40ζ(3)ζ(5)

)
g10 ± · · · . (7.4)

At each order of perturbation theory � only zeta functions and their combinations of the order
(2� − 1) contribute, moreover all with the overall sign (−1)�+1. The convergence properties
of this oscillating series were studied in [7]. It was shown that the convergence radius is equal
to 1

4 and that the series admits a natural analytical continuation to the complex plane.
On the string theory side this limit corresponds to the so-called spinning-string, with spin

M on the AdS5 space and angular momentum L on S5. The classical equations of motion
in this limit can be exactly solved, as shown in [79–81, 83], and the corresponding solution
can serve as a starting point for the semiclassical quantization. This was performed to the
two-loop order in perturbation theory (in g � 1), resulting in the following expansion of the
scaling function:

f (g) = 4g − 3 log 2

π
− K

4π2

1

g
− · · · . (7.5)

Here, K = β(2) denotes the Catalan constant. This expansion may be confronted with the
strong coupling expansion of the BES equation. We will discuss this further in section 7.2.3.

The function f (g) is thus the first interpolating observable of the AdS/CFT
correspondence. It is natural to pose the question whether it is possible to find its
generalizations, such that asymptotic Bethe equations (4.60) may once again be used to
define it non-perturbatively. A detail analysis of the semiclassical quantization of string
theory suggests that there exists a natural generalization of (7.2), see [83, 84, 88], when the
length is assumed to grow logarithmically with M

M → ∞, L → ∞, L = j log M. (7.6)

In the framework of semiclassical quantization g � 1 and it is also convenient to introduce
the following parameter:

z := 4g log M

L
= 4g

j
, (7.7)

19 This logarithmic scaling is a special case of the so-called Sudakov scaling, see [82].
20 It should be stressed that the scaling function of twist-two operators f (2)(g) does not need to coincide with the
scaling function of twist-three operators f (3)(g), etc. It would be interesting to prove whether the universal scaling
function f (g) coincides with its finite-length counterparts

f (g) =? f (2)(g) =? f (3)(g) =? · · · . (7.3)

Recently, the above equality was confirmed up to the fourth-loop order for f (2)(g) and f (3)(g), see [47, 50, 75].
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The classical energy of the spinning string in the limit (7.6) is then given by [83]

E0 = M + L
√

1 + z2 + · · · , (7.8)

and the one-loop correction found in [84] takes the following form:

E1 = L√
λ

1√
1 + z2

{z
√

1 + z2 − (1 + 2z2) log[z +
√

1 + z2]

− z2 + 2(1 + z2) log(1 + z2) − (1 + 2z2) log[
√

1 + 2z2]}. (7.9)

Upon identifying the energy with the scaling dimension of twist operators and expanding in
small j � 1, the following refinement of the scaling behaviour (7.2) can be found from (7.8)
and (7.9)

�(g) − M − L =
(

4g − 3 log 2

π
− j − K

4π2

1

g
+

j 2

8g
+ · · ·

)
log M + · · · . (7.10)

This suggests that the limit (7.6) could also be defined on the gauge theory side. In sections
7.3 and 7.4 we will show that this is indeed the case. In the generalized scaling limit (7.6) the
anomalous dimension exhibits again logarithmic scaling

� − M − L = γ (g) = f (g, j) log M + · · · , (7.11)

with the new scaling function f (g, j) depending now on two parameters. The ordinary scaling
limit (7.2) is recovered for j → 0

f (g, j)|j=0 = f (g). (7.12)

In section 7.4, we will derive a closed integral equation for the leading density of the roots
and argue that the function f (g, j) is analytic in g and j .

7.2. Scaling limit and the BES equation

In this section we will discuss extensively the scaling limit (7.2), in which the number of
the excitations diverges M → ∞, while the length L remains finite or diverges slower than
logarithmically with respect to M.

7.2.1. The leading one-loop density. It was shown in [47] that the roots in this limit cover
densely the interval

(−M
2 , M

2

)
. Since the number of the small holes grows slower than

logarithmically with M, it follows from (5.60) that they do not form a gap in the magnon root
distribution. The integral equation for the density (5.69) may thus be written as

2πρ0(u) + 2π
L − 2

M
δ(u) − L

M

1

u2 + 1
4

− 2
∫ M

2

− M
2

dv
ρ0(v)

(u − v)2 + 1
= 0. (7.13)

It should be supplemented with the proper normalization condition∫ ∞

−∞
ρ0(u) = 1. (7.14)

Equation (7.13) was derived in [47] and thoroughly analysed therein. Contrary to naive
expectations, though u(M) � M

2 diverges for M → ∞, one cannot use Fourier transformation
for the purpose of solving this equation. Rather than that, one defines the rescaled density

ρ̄0(ū) = Mρ0(u), where u = Mū. (7.15)
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This redefinition preserves the measure of the integration dūρ̄0(ū) = duρ0(u). Rescaling
equation (7.13) and using ρ̄0(ū) together with the relations

1

2M

1

ū2 + 1
4M2

= πδ(ū) + O
(

1

M

)
, (7.16)

1

M

1

(ū − ū′)2 + 1
M2

= πδ(ū − ū′) +
1

M

P
(ū − ū′)2

+ O
(

1

M2

)
, (7.17)

where P is the Cauchy principle value, one derives

0 = 4πδ(ū) + 2P
∫ 1

2

− 1
2

ū′ ρ̄0(ū
′)

(ū − ū′)2
. (7.18)

It was shown in [47] that this singular equation is solved by the Korchemsky density21

ρ̄K(ū) = 1

π
log

1 +
√

1 − 4ū2

1 − √
1 − 4ū2

= 2

π
arctanh(

√
1 − 4ū2). (7.19)

Since this solution is singular at ū = 0, the original density ρ0(u) = 1
M

ρ̄0(Mū) should be
considered as a distribution rather than a function. The one-loop anomalous dimension to the
leading order in M can be found directly from (5.64) and (7.19)

γ ABA
2 = 2

M

∫ 1
2

− 1
2

dv
ρ̄K(v̄)

v̄2 + 1
4M2

= − 4

Mπ

∫ 1
2

− 1
2

dv
log v̄

v̄2 + 1
4M2

+ O(M0) = 8 log M + O(M0).

(7.20)

In the second integral we have chosen the branch of the logarithm for which log (−v) =
log v + iπ . It should be noted that the leading result does not depend on L, which confirms the
universal scaling behaviour at the one-loop order.

The solution (7.19) can be also found to a good approximation from (5.52). Upon
rescaling u, as in (7.15), and using (5.68) together with (5.38), (5.58) and (5.52), one finds

ρ̄0(ū) = 1

π
log

1 − 2ū2

ū2
. (7.21)

Comparing (7.21) with (7.19), one concludes that the result (7.21) approximates well the exact
solution in the interval ū ∈ (− 1

2 , 1
2

)
and only at the boundaries deviates significantly from

(7.19). The discrepancy between (7.21) and (7.19) is caused by the Imlog term in (5.52) since
in the vicinity of ū = 1

2 und ū = − 1
2 the approximation (5.58) ceases to be valid. It should

be stressed, however, that the difference between (7.19) and (7.21) is negligible at the leading
order.

7.2.2. The BES equation. To the leading order in M it is possible to recast equation (5.74) in
the form of a linear integral equation for the density. For this purpose the large M expansion
of the following type of integrals needs to be determined:

f (M) =
∫ ∞

0
dx h(x) sin(u(M)x). (7.22)

Here limM→∞ u(M) = ∞ and h(x) is a sufficiently smooth function on the interval [0,∞).
We start by noting that

lim
M→∞

f (M) = 0, (7.23)

21 The density (7.19) was first found by Korchemsky in [56] while analysing certain Baxter equation.
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and therefore the following asymptotic expansion of (7.22) may be assumed:

f (M) =
∞∑

j=0

cj

u(M)1+j
. (7.24)

To determine the first coefficient c0 it is enough to integrate (7.22) by parts

c0 = lim
M→∞

u(M)f (M) = lim
M→∞

∫ ∞

0
dx h(x)

(
− d

dx
cos(u(M)x)

)
= h(0) (7.25)

since the boundary terms vanish. Integrating by parts (n + 1) times we find

cn = lim
M→∞

u(M)n+1

⎛
⎝f (M) −

n−1∑
j=1

cj

u(M)1+j

⎞
⎠ = (−1)

n
2 h(n)(0) for even n. (7.26)

All odd cn vanish because of the u(M) �→ −u(M) symmetry of (7.22).
The derivation of the leading equation is based on the observation that in the scaling

limit the nonlinear term in (5.74) may be neglected and equation (5.74) becomes a Fredholm
integral equation of the second kind. However, not all inhomogeneous terms contribute to the
leading order. Indeed, one can drop all terms except for the one containing the fast (universal)
holes u

(1,2)
h

2πe
t
2

it (et − 1)
− 2π cos

(
tu

(1,2)
h

)
it (et − 1)

(7.27)

since the rapidities of the remaining holes vanish in this limit (see (5.60))

u
(j)

h � 0 j = 3, . . . , L. (7.28)

Therefore the equation for the leading scaling function reads

Ẑ(t) = 4π e
t
2

it (et − 1)
− 4π cos

(
tu

(1)
h

)
it (et − 1)

− 4g2 e
t
2

et − 1

∫ ∞

0
dt ′ e− t ′

2 t ′K̂(2gt, 2gt ′)Ẑ(t ′). (7.29)

Despite the fact that the universal holes receive quantum corrections, these are sub-leading
at large M and the one-loop asymptotic behaviour (5.38) is still valid. One way to motivate
this is to note that the eigenvalue of the Casimir operator (5.15) is additively renormalized
(see [48])

J0 �→ J = M +
1

2
L +

γ (g)

2
. (7.30)

Substracting the one-loop part from the counting function

Ẑ(t) = Ẑ0(t) + δẐBES(t), (7.31)

and upon identifying, in accordance with (5.72), δẐBES(t) with the fluctuation density
(see [47])

δẐBES(t) = 16π ig2 e
t
2
σ̂BES(t)

t
log(M), (7.32)

one derives

σ̂BES(t) = t

et − 1

(
K̂(2gt, 0) − 4g2

∫ ∞

0
dt ′K̂(2gt, 2gt ′)σ̂BES(t

′)
)

, (7.33)
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where we have used the formula (7.25) to evaluate the integral∫ ∞

0
dt ′ e− t ′

2 t ′K̂(2gt, 2gt ′)Ẑ0(t
′) =

∫
du(M)

∫ ∞

0
dt ′ e− t ′

2 t ′K̂(2gt, 2gt ′)
∂

∂u(M)
Ẑ0(t

′)

= −4π iK̂(2gt, 0) log M + O(M0). (7.34)

Equation (7.33) is the celebrated BES equation and was first derived in [7]. Let us note that
the above derivation differs significantly from the original one and confirms independently
that the decomposition into the one-loop density and fluctuation density is mathematically
well-defined even non-perturbatively.

7.2.3. The strong coupling limit. Directly from the definition (5.72) and (7.20) together with
(7.32) it follows that the anomalous dimension to the leading order is given by

γ ABA(g) =
(

8g2 − 64g2
∫ ∞

0
dt ′ K̂(2gt, 2gt ′)σ̂BES(t

′)
)

log M + O(M0) (7.35)

and therefore one identifies

f ABA(g) =
(

8g2 − 64g2
∫ ∞

0
dt ′ K̂(2gt, 2gt ′)σ̂BES(t

′)
)

. (7.36)

Consequently, the scaling function f (g) is unambiguously determined through the solution of
the BES equation. This allows us to compare with the string theory result (7.5). A systematic
method22 of expanding the BES equation at large values of the coupling constant was found
in [85]. To the first few orders one has

f ABA(g) = 4g − 3 log 2

π
− K

4π2

1

g
− · · · (7.37)

in complete agreement with (7.5). This constitutes one of the first dynamical tests of the
planar AdS/CFT correspondence. It should be stressed that this would not have been possible
without the asymptotic integrability.

7.2.4. Finite size corrections. Beyond the leading order the large M expansion of the
anomalous dimension

γ = f (g) log M + ffinite(g, L) + O
(

1

log2 M

)
, (7.38)

consists of the finite part ffinite(g, L) and terms that vanish with M → ∞. The somewhat
extraordinary order of the first of these terms O

(
1

log2 M

)
comes from the quadratic contribution

of the small holes (5.60)23. For the finite part O(M0), however, the approximation (7.28) is
sufficient and the perturbative expansion of ffinite(g, L) may be found directly from (5.74)

f ABA
finite (g, L) = (γ − (L − 2) log 2) f (g) − 8(7 − 2L)ζ(3)g4

+ 8

(
4 − L

3
π2ζ(3) + (62 − 21L)ζ(5)

)
g6

− 8

15
((13 − 3L)π4ζ(3) + 5(32 − 11L)π2ζ(5) + 75(127 − 46L)ζ(7))g8

± · · · . (7.39)

22 The BES equation at the strong coupling was a subject of extensive studies in many different publications, see [86]
and references therein.
23 These corrections are present already at the one-loop level as may be seen by expanding (5.57) in u

(j)

h .
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The function f ABA
finite (g, L) exhibits transcendentality properties similar to the scaling function,

however in contradistinction to the latter, it explicitly depends on L. Thus, one cannot trust
the perturbative expansion beyond the wrapping order, though, as we will argue later, the part
strictly proportional to L should not be influenced by the wrapping interactions.

7.3. The generalized scaling limit

In this section we will define the generalized scaling limit (7.6) at the first order of perturbation
theory.

In this limit the length scales as L = j log M and one concludes from (5.60) that the
small holes occupy the interval (−c, c). Numerical analysis suggests that the largest of the
magnon roots is again of the order ±M

2 and consequently the Bethe roots condense on
the interval

(−M
2 ,−a

) ∪ (
a, M

2

)
. We will show later that a = c.

It is convenient to decompose the corresponding density24 into the singular part ρK(u)

and the fluctuation density σ̃ (u)

ρm(u) = ρK(u) + σ̃ (u), (7.40)

where ρK(u) = 1/Mρ̄K(u/M), see (7.15). Upon adding the following term to (5.69)

2
∫ a

−a

dv
ρK(v)

(u − v)2 + 1
= 4 log M

πM
(arctan(u + a) − arctan(u − a)) + O(M0), (7.41)

one finds that the fluctuation density σ̃ (u) must scale as log M/M . This justifies the following
redefinition:

ρm(u) = ρK(u) − 8 log M

M
σ(u). (7.42)

The equation for the density (5.69) may now be transformed into an equation for the fluctuation
density

2πσ(u) − 1

2π
(arctan(u + a) − arctan(u − a)) +

j

8

1

u2 + 1
4

− 2

(∫ −a

−∞
dv +

∫ ∞

a

dv

)
σ(v)

(u − v)2 + 1
= 0. (7.43)

This should be supplemented with the normalization condition for the density(∫ −a

−∞
+
∫ ∞

a

)
du ρm(u) = 1, (7.44)

from which one derives

j = 4a

π
− 8

∫ a

−a

du σ(u). (7.45)

Intuitively, the fluctuation density describes perturbations around the Korchemsky density,
caused by the gap in the root distribution. The size of the gap 2a may be determined in the
following way. One substitutes (7.45) into (7.43) and subsequently solves the equation for
σ(u, a). Putting the solution in (7.45) results in the relation j = j (a), which must be then
inverted.

The one-loop anomalous dimension may be found immediately using (7.19) and (7.42)

γ ABA
2 (j,M) =

(
8 − 16

π
arctan (2a(j)) − 16

(∫ −a(j)

−∞
du +

∫ ∞

a(j)

du

)
σ(u)

u2 + 1
4

)
log M

+O(M0). (7.46)

This proves the validity of (7.6) at the one-loop order.
24 We will denote the density in this limit by ρm(u).
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7.3.1. Fluctuation density in the Fourier space. Equation (7.43) becomes particularly simple
in the Fourier space. We rewrite the equation in the form

σ(u) = 1

4π2
(arctan(u + a) − arctan(u − a)) − j

16π

1

u2 + 1
4

+
∫ ∞

−∞

dv

π

σ(v)

1 + (u − v)2
−
∫ a

−a

dv

π

σ(v)

1 + (u − v)2
. (7.47)

Sticking to the conventions in [47], we define the Fourier transformation of the density to be25

σ̂ (t) = e− t
2

∫ ∞

−∞
du e−ituσ (u). (7.48)

It then follows from (7.47) that σ̂ (t) satisfies the following integral equation:

σ̂ (t) = t

et − 1

(
K̂h(t, 0; a) − j

8t
− 4

∫ ∞

0
dt ′K̂h(t, t

′; a)σ̂ (t ′)
)

, (7.49)

with the integral kernel K̂h(t, t
′; a) defined through

K̂h(t, t
′; a) = e

t ′−t
2

4πt

∫ a

−a

du cos(tu) cos(t ′u)

= 1

2πt
e− t

2
t cos(at ′) sin(at) − t ′ cos(at) sin(at ′)

t2 − t ′2
e

t ′
2 . (7.50)

The normalization condition (7.45) is equivalent to

j = 4a

π
− 16

π

∫ ∞

0
dt σ̂ (t) e

t
2

sin at

t
. (7.51)

The significant difference between (7.43) and (7.49) is the fact that the domain of the integration
of the latter does not depend on the boundary parameter a and the equation may be iterated
more easily. Once (7.49) has been solved to the desired order, one can find the corresponding
anomalous dimension from

γ ABA
2 (j,M)

log M
= 8

[
1 − 2

π
arctan 2a − 4

∫ ∞

0
dt

(
σ̂ (t) − 4t

∫ ∞

0
dt ′K̂h(t, t

′; a)σ̂ (t ′)
)]

+O
(

1

log M

)
. (7.52)

7.3.2. The density for the holes. The above integral equation for the density in the generalized
scaling limit was derived using magnon roots. As pointed out in section 5.3.2, however, the
system may also be equivalently described by holes. Below we will take this point of view
and eventually show that the resulting equation for the hole density is equivalent to (7.49).

As discussed above, in the limit (7.6) the small hole roots cover densely the interval
(−c, c). Similarly to the relation (5.68), the hole density can be defined through26

1

L

d

du
Z(u) = 2πρh(u) + O

(
1

L

)
, u ∈ (−c, c). (7.53)

It is also very natural to normalize the density to one∫ c

−c

du ρh(u) = 1. (7.54)

25 Every other quantity in the Fourier space is defined through (5.73).
26 In what follows, by hole density we understand the density of the small holes u

(j)

h , j = 3, . . . , L .
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Approximating the nonlinear term in (5.52) as in (5.58) we find

ρh(u) = 1

L

(
ψ
(
i
(
u − u

(1)
h

))
+ ψ

( − i
(
u − u

(1)
h

)
+ ψ

(
i
(
u + u

(1)
h

))
+ ψ

( − i
(
u + u

(1)
h

)))
+

1

L
2 log 2 − 1

2π

(
ψ

(
1

2
+ iu

)
+ ψ

(
1

2
− iu

))

+
∫ c

−c

dv

2π
(ψ(i(u − v)) + ψ(−i(u − v)))ρh(v). (7.55)

Moreover, using (5.38) one gets to the leading order

ρh(u) = 2

πj
− 1

2π

(
ψ

(
1

2
+ iu

)
+ ψ

(
1

2
− iu

))
+
∫ c

−c

dv

2π
(ψ(i(u − v))

+ ψ(−i(u − v)))ρh(v). (7.56)

Upon solving this equation, the one-loop generalized scaling function may be found from
(5.57)

f(1)(j) = lim
M→∞

γ ABA
2 (j,M)

log M
= 8 + 2j

∫ c

−c

du ρh(u)

(
ψ

(
1

2
+ iu

)
+ ψ

(
1

2
− iu

)
− 2ψ(1)

)
.

(7.57)

Though (7.56) together with (7.54) constitute the sought-for system of equations, it is more
convenient for the computational purposes to transform them in a way such that the boundary
parameter c does not specify the integration domain. Hence, we rescale the variable u and the
density itself as in (7.15)

ū = u

c
, ρ̄h(ū) = jcρh(u) (7.58)

and define the non-singular kernel

K(ū, v̄) = c

2π

(
ψ(ic(ū − v̄)) + ψ(−ic(ū − v̄)) − ψ

(
1

2
+ icū

)
− ψ

(
1

2
− icū

))
. (7.59)

Equation (7.56) may now be rewritten as

ρ̄h(ū) = 2

π
c +

∫ 1

−1
dv̄ K(ū, v̄)ρ̄h(v̄). (7.60)

One notes that the dependence on the boundary parameter c is hidden in the integral kernel.
It follows from (7.54) and (7.58) that the normalization condition for the rescaled density is
given by the following expression:

j =
∫ 1

−1
dv ρ̄h(ū). (7.61)

Finally, the one-loop relation (7.57) may be rewritten in the following form:

f(1)(j) = 8 + 2
∫ 1

−1
dū ρ̄h(ū)

(
ψ

(
1

2
+ icū

)
+ ψ

(
1

2
− icū

)
− 2ψ(1)

)
. (7.62)

The integral equation (7.60) is particularly suitable for the iteration. To the first few orders
one finds from (7.61) and (7.62) the following expansion of the one-loop generalized scaling
function:

f(1)(j) = 8 − 8j log 2 +
7

12
j 3π2ζ(3) − 7

6
j 4π2 log 2ζ(3)

+ 2j 5

(
7

8
π2 log2 2ζ(3) − 31

640
π4ζ(5)

)
+ O(j 6). (7.63)
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Figure 7. The convergence function r(k) for k = 1, . . . , 600 .

It turns out that equation (7.60) can be also very effectively analysed numerically. In figure 7
we present the convergence function of the series f(1)(j) = ∑∞

k=0 f1,kj
k ,

r(k) = (f1,k)
− 1

k , (7.64)

for the first 600 terms. One concludes from this numerical analysis that the convergence radius

r = lim sup
k→∞

r(k) � 0.4 (7.65)

exist and thus the function (7.63) is an analytic function in the region |j | < r .
It should be noted that due to (5.68) and (7.42) the hole density should be considered as

an analytic continuation of the fluctuation density σ(u)

jρh(u) = 2

π
− 8σ(u) u ∈ (−c, c). (7.66)

Using (7.48) one can rewrite the above relation as

jρh(u) = 2

π
− 8

π

∫ ∞

0
dt σ̂ (t) e

t
2 cos tu. (7.67)

This relation may in turn be used to prove the equivalence of (7.49) and (7.56). Multiplying
(7.49) with e

t
2 cos tu and integrating in t over the positive real axis one finds, using (7.50)

together with (7.51) and (7.67), equation (7.56). Thus, we conclude that a = c must hold and
that there is no gap between the hole and the magnon distributions.

7.4. The generalized scaling function to all orders

In this section we will generalize equation (7.43) to all orders in perturbation theory, thus
proving the existence of the scaling function (7.11).

7.4.1. Derivation. The asymptotic Bethe equations (5.10) in the novel limit (7.6) are
particularly easy to study with the formalism developed in section 5.4. The nonlinear term
in (5.74) may be again neglected. On the other hand, the small holes cannot be disregarded
anymore. This is due to the fact that their overall contribution is proportional to L = j log M
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and therefore must be taken into account. Thus, equation (5.74) in the limit (7.6) takes the
following form:

Ẑ(t) = 2πL e
t
2

it (et − 1)
J0(2gt) −

L∑
j=1

2π cos
(
tu

(j)

h

)
it (et − 1)

+ 8πg2 e
t
2

i(et − 1)

L−2∑
j=1

∫ ∞

0
dt ′ e− t ′

2 K̂(2gt, 2gt ′) cos
(
t ′u(j)

h

)

− 4g2 e
t
2

et − 1

∫ ∞

0
dt ′ e− t ′

2 t ′dK̂(2gt, 2gt ′)Ẑ(t ′). (7.68)

Similarly as in (7.31), we subtract the one-loop part

Ẑ(t) = Ẑ0(t) + δẐ(t), (7.69)

and identify δẐ(t) with the fluctuation density σ̂ (t) 27

δẐ(t) = 16π i e
t
2
σ̂ (t)

t
log M. (7.70)

This allows us to rewrite equation (7.68) in the form

σ̂ (t) = t

et − 1

[
g2K̂(2gt, 0) − j

8

J0(2gt)

t
+

1

8 log M

L∑
j=3

e−t/2 cos
(
tu

(j)

h

)
t

− g2

2

1

log M

L∑
j=3

∫ ∞

0
dt ′K̂(2gt, 2gt ′) e−t ′/2 cos

(
t ′u(j)

h

)

− 4g2
∫ ∞

0
dt ′K̂(2gt, 2gt ′)σ̂ (t ′)

]
. (7.71)

It follows from (5.80) that the anomalous dimension to the leading order in M can be written
as

γ = 8g2 log M

(
1 − 1

log M

L∑
j=3

∫ ∞

0
dt

J1(2gt)

2gt
e−t/2 cos

(
tu

(j)

h

)

− 8
∫ ∞

0
dt

J1(2gt)

2gt
σ̂ (t)

)
+ O(M0). (7.72)

As discussed in section 5.4, the equations for the holes to all-loop order (but for perturbative
values of g) are given by

Z
(
u

j

h

) = π
(
2n

j

h + δ − 1
)
. (7.73)

Upon performing Fourier transformation of this equation, one finds the relation

i

π

∫ ∞

0
sin

(
tu

j

h

)
Ẑ(t) = π

(
2n

j

h + δ − 1
)
, (7.74)

which after substituting (7.69) into (7.73) can be written in the following form:

2πn
(k)
h = 4F

(
u

(k)
h , u

(1)
h

) − 16 log M

∫ ∞

0
dt

σ̂ (t)

t
et/2 sin

(
tu

(k)
h

)
, (7.75)

27 The fluctuation density in the u-space σ(u) for u ∈ (−a, a) must be considered as an analytic continuation.
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with

F ′(x, y) ≡
∫ ∞

0
dt cos tx

e
t
2 − cos ty

et − 1

= 1

4

(
ψ (i(x − y)) + ψ (−i(x − y)) + ψ (i(x + y)) + ψ (−i(x + y))

− 2ψ

(
1

2
− ix

)
− 2ψ

(
1

2
+ :x

))
. (7.76)

For L = j log M → ∞ the hole roots, as shown before, occupy a finite interval around
zero. Therefore one easily derives from (7.75) the following integral relation28 for the all-loop
hole density ρh(u)

jρh(u) = 2

π log M
F ′(u, u

(1)
h

) − 8

π

∫ ∞

0
dt σ̂ (t) et/2 cos(tu). (7.77)

The first term in this equation 2
π

1
log M

F ′(u, u
(1)
h

)
is in the limit M → ∞ identical with (7.21),

when expressed in the original variable u = Mū. Therefore it follows from (7.19) that

F ′(u, u
(1)
h

) = log M + O(M0) u ∈ (−a, a). (7.78)

The sums in (7.71) to the leading order may be replaced by integrals over the hole density.
Using (7.77) and (7.78) one finds the equation

σ̂ (t) = t

et − 1

[
− j

8t
J0(2gt) + K̂h(t, 0; a) − 4

∫ ∞

0
dt ′K̂h(t, t

′; a)σ̂ (t ′)

+ g2K̂(2gt, 0) − 4g2
∫ ∞

0
dt ′K̂(2gt, 2gt ′)σ̂ (t ′),

− 4g2
∫ ∞

0
dt ′t ′K̂(2gt, 2gt ′)

(
K̂h(t

′, 0; a) − 4
∫ ∞

0
dt ′′K̂h(t

′, t ′′)σ̂ (t ′′)
)]

(7.79)

with K̂h(t, t
′; a) defined in (7.50). From the normalization condition for the hole density∫ a

−a

du ρh(u) = 1 (7.80)

one derives the same relation as in the one-loop case (7.51)

j = 4a

π
− 16

π

∫ ∞

0
dt σ̂ (t) e

t
2

sin at

t
. (7.81)

Finally, putting (7.81) into (7.79) one finds the desired integral equation for the leading
density in the generalized scaling limit (7.6)

σ̂ (t) = t

et − 1

(
K̂(t, 0) − 4

∫ ∞

0
dt ′K̂(t, t ′)σ̂ (t ′)

)
. (7.82)

The new kernel K̂(t, t ′) is a non-trivial combination of the hole and magnon kernels

K̂(t, t ′) = g2K̂(2gt, 2gt ′) + K̂h(t, t
′; a) − J0(2gt)

t

sin at ′

2πt ′
e

t ′
2

− 4g2
∫ ∞

0
dt ′′t ′′K̂(2gt, 2gt ′′)K̂h(t

′′, t ′; a). (7.83)

28 The magnon density is related to σ̂ (t) through

ρm(u) = 2

π

1

M
F ′(u, u

(1)
h ) − 8 log M

πM

∫ ∞

0
dt σ̂ (t) et/2 cos(tu).
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It is interesting to note that equation (7.82) takes structurally a similar form to the BES
equation (7.33). The leading anomalous dimension (7.72) may be expressed through σ̂ (t)

with the help of (7.77), which in conjunction with (7.11) leads to the following expression:

f ABA(g, j) = 8g2

[
1 − 8

∫ ∞

0
dt

J1(2gt)

2gt
tK̂h(t, 0; a(j))

− 8
∫ ∞

0
dt

J1(2gt)

2gt

(
σ̂ (t) − 4t

∫ ∞

0
dt ′K̂h(t, t

′; a(j))σ̂ (t ′)
)]

= 16

(
σ̂ (0) +

j

16

)
. (7.84)

Since the wrapping interactions may be neglected in the limit in question, the above formula
proves the existence of the generalized scaling function (7.11) to all orders in perturbation
theory. This novel function depends on two variables and thus it is possible to define two
infinite families of the scaling functions by expanding in g or j respectively

f (g, j) = f (g) +
∞∑

n=1

f (n)(g)jn = f(1)(j) +
∞∑

n=2

f(n)(j)g2n−2. (7.85)

In particular, the function f (1)(g) coincides with (7.39) after setting L = j log M and keeping
the leading terms in the expansion only

f (1)(g) = −f (g) log 2 + 16g4ζ(3) − g6

(
8

3
π2ζ(3) + 168ζ(5)

)

+ g8

(
8

5
π4ζ(3) +

88

3
π2ζ(5) + 1840ζ(7)

)
+ · · · . (7.86)

This suggests that the L dependent part of (7.39) is not influenced by the wrapping effects.
Another curious observation is the vanishing of the f (2)(g) function to all orders in perturbation
theory. An indication of such behaviour on the string theory side was observed in [87].

Interestingly, for j � g it was conjectured in [88] that the generalized scaling function
(7.11) can be computed using the results of the O(6) sigma model. Recently, it was confirmed
[89] that the equation (7.82) together with (7.81) are equivalent to the TBA equations of the
nonlinear O(6) sigma model. Please refer to [90–92] for the further development on this
subject.

8. The Hubbard model

In this section we will explain the interesting coincidence that the su(2) asymptotic Bethe
equations, though without the dressing factor, may be reproduced from the spectral equations
of a well-defined short-range integrable model, the Hubbard model.

8.1. The su(2) sector and the Hubbard model

The su(2) sector is one of the simplest dynamical sectors in the N = 4 gauge theory. The
operators of this sector are composed of two scalar fields only, which we will denote by Z and
X . Conventionally, we choose the reference vacuum to be

|ZL〉 = TrZL. (8.1)

Excited states are obtained by putting X fields into the trace

Tr(XMZL−M) + · · · , (8.2)
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followed by the diagonalization of the su(2) dilatation operator (which is a consistent truncation
of the complete dilatation operator to this sector). The Cartan weights of the primary state
(corresponding to the diagram 4.4) are given by

{�0, s1, s2, q1, p, q2, B,L} = {L, 0, 0,M,L − 2M,M, 0, L}, (8.3)

from which, according to (4.67), the following excitation pattern emerges

{K1,K2,K3,K4,K5,K6,K7} = {0, 0, 0,M, 0, 0, 0}. (8.4)

The corresponding all-loop asymptotic Bethe equations29 take particularly simple form(
x+

k

x−
k

)L

=
M∏

j=1,j =k

uk − uj + i

uk − uj − i
exp(2iθ(uk, uj )). (8.5)

At the one-loop order the above equations reduce to the spectral equations of the
Heisenberg spin chain (3.52) and consequently the dilatation operator of su(2) may be
identified with the Hamiltonian of the XXX 1

2
spin chain (3.42). The higher corrections to the

dilatation operator were studied in [37, 38, 45] and under some assumptions were derived up
to the five-loop order. It turns out that the �-loop dilatation operator acts simultaneously on
the (� + 1) neighbouring lattice sites. Moreover, these corrections become very complicated
beyond the first few orders. Therefore it seems hopeless to guess its all-loop form solely from
the perturbative expansion. In order to reveal the hidden connection to a different integrable
model, we will investigate in detail the antiferromagnetic state of the su(2) sector.

We start by noting that the S-matrix on the right-hand side of (8.5), upon neglecting the
dressing factor, depends only on the difference of the rapidities. Since the dressing factor is
known to contribute from the fourth-loop order, we will neglect it in what follows and discuss
this approximation at the end of this section. The antiferromagnetic state is a maximally filled
state. In the case of compact spin chains like XXX 1

2
this implies that Mmax = L

2 .30 The energy
of this state, in the case when the length of the chain becomes thermodynamically large, was
computed for the XXX 1

2
spin chain as early as in 1938 by Hulthén [93]. He observed that

the corresponding Bethe equations in the limit L → ∞ can be written in the form of an
integral equation, which in turn may be solved by Fourier transformation. Below we will
apply this method to the deformed equations (8.5). Taking the logarithm of equations (8.5)
and introducing the root density, one finds

2πρ(u) + 2
∫ ∞

−∞
du′ ρ(u′)

(u − u′)2 + 1
= i

d

du
log

x+(u)

x−(u)
(8.6)

since in the Arctan branch of the logarithm the mode numbers are uniformly distributed. It
follows directly from (4.59) that

i
d

du
log

x+(u)

x−(u)
= i√

(u + i/2)2 − 4g2
− i√

(u − i/2)2 − 4g2
. (8.7)

The integral kernel in (8.6) depends on the difference of the variables only, and the equation
may thus be solved by Fourier transformation

ρ(u) =
∫ ∞

0

dt

2π

cos (tu) J0(2gt)

cosh
(

t
2

) . (8.8)

29 In the literature these equations are known as the BDS equations [38].
30 Equations (8.5), under the assumption that g � 1, may be considered as an all-loop deformation of the Heisenberg
spin chain.
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The corresponding anomalous dimension may be found immediately from (4.68)
γ (g)

2g2L
=
∫ ∞

−∞
du ρ(u)

(
i

x+(u)
− i

x−(u)

)
+ O(L−1)

= 4
∫ ∞

0

dt

2gt

J0(2gt)J1(2gt)

1 + et
+ O(L−1). (8.9)

It is now very interesting to note that equations (8.8) and (8.9) are well-known results
of the solid state physics. They describe respectively the density and the energy of the
antiferromagnetic state of the Hubbard model. The integrability of this model was proven by
Lieb and Wu in [94], where also the corresponding Bethe equations were derived.

The Hubbard model is a dynamical, short-range model of N electrons on L lattice sites.
Due to the Pauli’s exclusion principle, there are four possible states on each lattice site:

(i) no particles;
(ii) spin-up electron ↑;

(iii) spin down electron ↓;
(iv) double occupied state, with spin-up and spin-down electrons �:=↑↓.

In what follows, we will consider the half-filled case N = L. The Hamiltonian of the
Hubbard model consists of the kinetic part that forces the electrons to jump between different
sites and the potential part, which according to the value of U corresponds to repulsive or
attractive force respectively

ĤHubbard = −t

L∑
i=1

∑
σ=↑,↓

(
c
†
i,σ ci+1,σ + c

†
i+1,σ ci,σ

)
+ tU

L∑
i=1

c
†
i,↑ci,↑c

†
i,↓ci,↓. (8.10)

The operators c
†
i,σ and ci,σ are canonical Fermi operators obeying

{ci,σ , cj,τ } = {
c
†
i,σ , c

†
j,τ

} = 0, (8.11){
ci,σ , c

†
j,τ

} = δij δστ . (8.12)

We assume the system to be closed and thus we identify

cL+1,σ = c1,σ , c
†
L+1,σ = c

†
1,σ (8.13)

for σ =↑,↓. The Hamiltonian is invariant with respect to the su(2) transformations

[ĤHubbard, Ŝ
a] = 0 a = +,−, z, (8.14)

with Ŝa = ∑L
i=1 Ŝa

i , which allows us to classify the spectrum according to the eigenvalues of
the total spin and its z component.

The precise correspondence between (8.8), (8.9) and the corresponding results of the
Hubbard model is established under following identification of the parameters:

t = − 1

2g
, U = 1

g
. (8.15)

This, however, suggests that perhaps all states of the BDS spin chain are, up to the wrapping
order, states of the Hubbard model as well. It turns out that in the case of odd values of L the
BDS equations indeed diagonalize the Hamiltonian (8.10), while for the even values the kinetic
terms of the Hamiltonian need to be multiplied by additional phase factors. This is equivalent
to coupling the Hubbard model to a homogeneous magnetic field and the aforementioned
phase factors may be then considered as the Aharonov–Bohm phases

Ĥ = 1

2g

L∑
j=1

∑
σ=↑,↓

(
eiφσ c

†
j,σ cj+1,σ + e−iφσ c

†
j+1,σ cj,σ

) − 1

2g2

L∑
j=1

c
†
j,↑cj,↑c

†
j,↓cj,↓, (8.16)
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with

φ↑ = φ↓ = φ, φ = π

2L

{
(L − 1) mod 2

}
. (8.17)

The perturbative expansion at small values of g corresponds, accordingly, to the strongly
coupled (U � 1) Hubbard model. It was shown in [95] that the perturbative expansion of
the Hamiltonian (8.16) at large values of U = 1/g coincides up to three orders in g2 with
the perturbative expansion of the dilatation operator found in [38]. We will not repeat this
calculation here, but instead show in the following section that the BDS equations (8.5) can
be derived in the asymptotic region from the Lieb–Wu equations.

The vacuum state of the Hubbard model is annihilated by the ci,↑, ci,↓ operators and is a
tensor product of L empty lattice sites

|0〉L = |0〉 ⊗ |0〉 ⊗ · · · |0〉︸ ︷︷ ︸
L

. (8.18)

The elementary excitations on this vacuum are the spin-up and spin-down electrons. On the
other hand, the double occupation must be considered as a composition of the elementary
excitations. The interaction between the constituents of such a composed state is according
to (8.16) repulsive. Since we confine ourselves to the half-filled case it is more convenient to
choose the BPS vacuum as the reference vacuum

|ZL〉 = | ↑↑ · · · ↑↑〉 = c
†
1↑c

†
2↑ · · · c†L−1↑c

†
L↑|0〉L. (8.19)

It is easy to show that this state is also a zero energy state of (8.16). The disadvantageous
feature of the vacuum (8.19), that is the fact, that it is not annihilated by the annihilation
operators, may be easily overcome by performing a particle–hole transformation

◦ ⇐⇒ ↑, (8.20)

↓ ⇐⇒ � . (8.21)

After this transformation the spin-up electrons are considered to be empty lattice sites, while
the empty lattice sites become double occupied states. Explicitly, we identify

cj,◦ = c
†
j,↑, c

†
j,◦ = cj,↑, (8.22)

cj,� = cj,↓, c
†
j,� = c

†
j,↓. (8.23)

The algebraic relations between c
†
j,◦, cj,◦, c

†
j,� and cj,� follow directly from the

anitcommutation relations (8.11) and (8.12). Accordingly, the dual Hamiltonian can be
written as

Ĥ = 1

2g

L∑
j=1

∑
σ=◦,�

(
eiφσ c

†
j,σ cj+1,σ + e−iφσ c

†
j+1,σ cj,σ

) − 1

2g2

L∑
j=1

(
1 − c

†
j,◦cj,◦

)
c
†
j,�cj,�, (8.24)

with the phases φ� = φ↓ and φ◦ = π − φ↑ being different from the one for the original
exciations. Comparing (8.16) and (8.24) one finds that performing the particle–hole
transformation amounts to the substitution

Ĥ (g;φ, φ) → −Ĥ (−g;π − φ, φ) − M

2g2
, (8.25)

where M denotes the number of the double occupancies. The sign in front of the potential
part of the Hamiltonian (8.24) is opposite to that in (8.16), which means that the holes and the
double occupancies attract each other and form bound states, the spin down electrons.
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8.2. The Lieb–Wu equations

The Hamiltonian (8.10), as shown in [94], is integrable and can be diagonalized with the help
of the Bethe ansatz. The same holds for Hamiltonians with arbitrary Aharonov–Bohm phases,
which were studied in [96]. In the case of half-filling the Bethe equations corresponding to
(8.16) are given by (see [96])

eiq̃nL =
M∏

j=1

uj − 2g sin(q̃n + φ) − i/2

uj − 2g sin(q̃n + φ) + i/2
, n = 1, . . . , L (8.26)

L∏
n=1

uk − 2g sin(q̃n + φ) + i/2

uk − 2g sin(q̃n + φ) − i/2
=

M∏
j=1,j =k

uk − uj + i

uk − uj − i
, k = 1, . . . ,M. (8.27)

Here, the parameter M denotes the number of the spin-down electrons. The energy of a state
is a function of all qn

E = 1

g

L∑
n=1

cos(q̃n + φ). (8.28)

In the limit g → 0 equations (8.26) and (8.27) become the momentum constraint (after setting
eiq̃nL = 1) and the Bethe equations of the su(2) spin chain, respectively. The 1/g correction
to the energy (8.28) is zero, due to

eiq̃nL = 1 �⇒ q̃n = 2π

L
(n − 1) + O(g), n = 1, . . . , L. (8.29)

To obtain the O(g0) term one must determine the O(g) corrections to the roots q̃n. Since the
one-loop roots are known, this is merely a linear problem. Upon solving (8.26) to the order
O(g), one finds

E =
M∑

k=1

1

u2
k + 1

4

+ O(g), (8.30)

which is the expression for the energy of the XXX spin chain, cf (4.41). Knowing the one-loop
solutions q̃n, n = 1, . . . , L and uk, k = 1, . . . ,M one can solve equations (8.26) and (8.27)
perturbatively. In general, for 1 � L < ∞, it is very complicated to solve the Bethe equations
exactly. On the other hand, the BDS equations are strictly speaking only valid for L → ∞.
Therefore it is convenient to dualize equation (8.26). Introducing x = eiq̃n one concludes that
equation (8.26) in its polynomial form has in total L + 2M solutions. Using the remaining 2M

roots, one can rewrite (8.26) and (8.27) as

eiqnL =
M∏

j=1

uj − 2g sin(qn − φ) − i/2

uj − 2g sin(qn − φ) + i/2
, n = 1, . . . , 2M (8.31)

2M∏
n=1

uk − 2g sin(qn − φ) + i/2

uk − 2g sin(qn − φ) − i/2
= −

M∏
j=1,j =k

uk − uj + i

uk − uj − i
k = 1, . . . ,M. (8.32)

The energy in terms of the dual roots can be found to be

E = − M

2g2
− 1

g

2M∑
n=1

cos(qn − φ). (8.33)
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Comparing (8.33) to (8.28) together with (8.25) one infers that the dual solutions qn, n =
1, . . . , 2M diagonalize the dual Hamiltonian.

The advantage of equations (8.31) and (8.32), as opposed to (8.26) and (8.27), is the
independence of the former on the length L. Since the elementary dual excitations attract
each other, it is natural to assume that bound states (↓= ◦+ �) will be energetically
favoured. Usually, the bound states manifest themselves in the exponential localization of
the wavefunction. Therefore for the lowest states in the energy band we make the following
ansatz for the 2M dual roots31:

qn − φ = π

2
sgn(pn) +

pn

2
+ iβn,

qn+M − φ = π

2
sgn(pn) +

pn

2
− iβn, βn > 0, n = 1, . . . ,M, (8.34)

with pn ∈ R denoting the bound state momentum. Substituting (8.34) and (8.35) into
(8.31) one finds that when L � 1 the left-hand side of this equation vanishes like e−βnL for
n = 1, . . . ,M and diverges like eβnL for n = M + 1, . . . , 2M . This is true independently of
the value of M, and therefore up to exponential corrections the following relations must hold

un − i/2 = 2g sin(qn − φ) + O(e−βnL), un + i/2 = 2g sin(qn+M − φ) + O(e−βnL).

(8.35)

Putting (8.35) into equation (8.32) one finds that the latter is trivially satisfied. The both
conditions (8.34) and (8.35) may be compactly written as

un ± i/2 = 2g sgn(pn) cos

(
pn

2
∓ iβn

)
+ O(e−βnL). (8.36)

Solving (8.36) for pn and βn results in

sinh βn = 1

4gsgn(pn) sin pn

2

= 1

4g
∣∣ sin pn

2

∣∣ , (8.37)

un = 2gsgn(pn) cos
pn

2
cosh βn = 1

2
cot

pn

2

√
1 + 16g2 sin2

pn

2
. (8.38)

The second relation is equivalent to the all-loop dispersion relation (4.60)

eip = x+(u)

x−(u)
. (8.39)

In order to eliminate qn from (8.31) one substitutes the relation (8.35) into (8.31) and
subsequently multiplies the equation for un with the equation for un+M . The divergencies
occurring in the limit L → ∞ cancel each other and the finite part can be written as

ei(pn+2φ+snπ)L = −
M∏

j=1,j =n

un − uj + i

un − uj − i
. (8.40)

Using (8.17) and (8.39) one confirms that (8.40) is equivalent to the BDS equations (8.5). The
energy (8.33) reads

E = − 1

g

M∑
n=1

(cos(qn − φ) + cos(qn+M − φ)) − M

2g2

= 2

g

M∑
n=1

∣∣∣∣ sin
pn

2

∣∣∣∣ cosh βn − M

2g2
=

M∑
n=1

(
1

x+(un)
− 1

x−(un)

)
= γ (g)

2g2
, (8.41)

31 The separation of the π
2 sgn(pn) factor is made in order to simplify the calculations. The variable pn will correspond

to the momentum of a magnon pn ∈ (−π, π) so that (qn − φ) ∈ ( π
2 , 3π

2 ). Interestingly, there exist no solutions of
(8.31) and (8.32) with (qn −φ) ∈ (−π/2, π/2). Such solutions would correspond to magnons with negative energies.
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where we have made use of (8.37) and (8.39). The above construction can be generalized to
the case of complex momenta pn. The argument of the sigma function in (8.34) and (8.36)
must then be replaced through the real part of pn.

For the purpose of derivation of the BDS equation we have assumed that the holes ◦
and the double occupancies � form bound states. Though this is true for the low-energy
states, there exist states for which one or more bound states are split up and the corresponding
momenta are real. Their presence may be also noted by a simple counting. In the Hubbard
model there are roughly 4L/L cyclic states, while in the Heisenberg or BDS spin chain the
number of cyclic states amounts to 2L/L. This discrepancy is explained by the existence of
the excited states. One should note, however, that the energies of these states are according to
(8.33) non-perturbative

E ∼ 1

g2
, (8.42)

and therefore the corresponding operator cannot be defined in the perturbative gauge theory.
The accuracy of equation (8.40) is related to the accuracy of the solution (8.35). It follows
immediately from (8.37) that for the perturbative values of g

βn � − log g + O(g0), (8.43)

and thus the solutions (8.35) receive corrections, starting from the order e−βnL � gL. The
energy (8.41) on the other hand, due to the expansion

cos(x + ε) = cos(x) − sin(x)ε − 1
2 cos(x)ε2 + O(ε3) (8.44)

and the fact that qn and qn+M are complex conjugated to each other, leads to a correct result up
to the order O(g2L−2). Due to the relation γ (g) = 2g2E(g) this corresponds precisely to the
wrapping order. This is a strong indication that there exists an integrable short range model,
which correctly captures the wrapping interactions and in the asymptotic region leads to the
asymptotic Bethe equations (8.5). It should be noted, however, that the usual Hubbard model
may not be a candidate for such model since it leads to the trivial dressing factor σ(u, v) = 1,
cf (8.40). This contradicts both the proposed crossing symmetry [6] (σ(u, v) = 1 does not
satisfy the crossing equation) and the explicit perturbative calculation [45]32. It is, however,
likely that a suitable deformation of the Hubbard model would lead to the ‘dressed’ BDS
equations.

The hypothesis that the dilatation operator of the N = 4 SYM theory is equivalent to a
Hamiltonian of a short-range integrable model, and that the observed long-rangeness is only
an artifact of the perturbative expansion is very appealing, though several issues need still to
be understood. Most importantly, it is not known whether such a short-range system with
both bosonic and fermionic elementary excitations can be found since, in general, unlimited
number of bosons can occupy each lattice site, preventing the factorization of the scattering
into a sequence of two-body processes. Another complication is the presence of the dressing
phase, which has a very complicated transcendental structure, see [7].

It is also interesting to note, as was observed in [97], that the Ssu(2|2)S-matrix may be
identified with the R-matrix of the Hubbard model. However, this observation does not seem
to be related with the context in which the Hubbard model was introduced in this section.
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